

EMERGENT CONSTRUCTION OF MELODIC PITCH AND

HIERARCHY THROUGH AGENTS COMMUNICATING

EMOTION WITHOUT MELODIC INTELLIGENCE

Alexis Kirke Eduardo R. Miranda

Interdisciplinary Centre for

Computer Music Research,

University of Plymouth, UK

Interdisciplinary Centre for

Computer Music Research,

University of Plymouth, UK

ABSTRACT

A multi-agent system is presented which generates

melody pitch sequences with a hierarchical structure.

The system has no explicit melodic intelligence and

generates the pitches as a result of emotional influence

and communication between agents, and the hierarchical

structure is a result of the emerging agent social

structure. Another key element is that the system is not a

mapping from multi-agent interaction onto musical

features, but actually utilizes music for the agents to

communicate emotions. Each agent in the society learns

its own growing tune during the interaction process.

1. INTRODUCTION

The generation of novelty is at the heart of many

computer-aided composition (CAC) systems. Without

some way of generating new material, a CAC will churn

out the same material time after time. To avoid this,

many systems utilize random numbers. A more recent

alternative is the use of complexity which is ordered but

unpredictable. Popular types of systems that generate

such complexity are found in the field of Artificial Life

or A-Life [1]. A-Life investigates systems related to life,

their processes, and evolution; it does this most often

through computer simulations and models – for example

Cellular Automata. Many A-life systems have two

elements in common with have made them attractive to

composers for use in CAC: they generate complexity

with order and structure, and they inspire composers by

their variety of patterns. So although A-Life systems can

generate unexpected complexity, there is an inherent

order – they are not solely random. This is often called

“Emergent” behaviour.

 One field which has a large intersection with Artificial

Life is Multi-agent Systems (MAS), which (along with

computer-aided composition and computer expressive

performance) is one of the 3 key areas utilized in this

paper. Each agent in an MAS is a digital entity which can

interact with other agents to solve problems as a group,

though not necessarily in an explicitly co-ordinated way.

What often separates agent-based approaches from

normal object-oriented or modular systems is their

emergent behaviour [1]. The solution of the problem

tackled by the agents is often generated in an unexpected

way due to their complex interactional dynamics, though

individual agents may not be that complex. As with the

application of other A Life systems in CAC, these social

dynamics can be both artistically functional – for

example each agent in an ensemble can contribute a

motif or play an artificial instrument in a piece of music;

or artistically motivational, inspiring an algorithmic

composer to produce the “music of artificial societies”.

In this paper we present a new MAS approach for

melody generation which, unlike much A-Life CAC

work, is not a mapping from multi-agent interaction onto

musical features, but actually utilizes music for the

agents to communicate emotions. Each agent in the

society learns its own growing monophonic MIDI tune

during the interaction process.

2. MULTI-AGENT SYSTEMS FOR MUSIC

Table 1 shows the majority of multi-agent systems for

creating music from past research. It is designed to give

quick familiarity with a number of key issues found in

musical multi-agent systems. The fields are explained

below:

• “Complexity” – What is the level of processing in

individual agents, how complex are they?

• “Homog / Het” – are the agents in the MAS

homogeneous or heterogeneous (i.e. do agents all start

out the same, or are some different)?

• “Comm” – do the agents communicate, and if so do

they do it synchronously or asynchronously (i.e. do they

take it in turns to communicate and process, or do they

do it concurrently)?

• “Initial Hierarchy” – is there a hierarchy of

planning/control for the agents; are some agents

dependent on others? Can some agents control others?

• “Tune” – Does the system generate multiple

composition alternatives when it completes processing,

or a single composition?

• “Real-time” – when the agents are activated, is the

music generated in real-time?

• “Size” – what is the number, or average number, of

agents in the system?

Table 1. Musical Multi-Agent Systems

• “Model / Func” – is the system designed solely to

model some element of music, or as a computer-aided

composition system?

 The above choice of properties is also because they

are also some of the key defining features of any

MAS. The system in this paper is a non-realtime

system which works with a small to medium number

of agents (i.e. not hundreds of agents), it generates

multiple tunes in parallel, and it is focused on

computer-aided composition not on modelling the

composition process or musical culture.

4. RELATED WORK

The four closest systems to the one in this paper are

now examined a little more closely. The Dahlstedt

and McBurney system [1] seems to be more a

proposal that has never been implemented. The

approach is to use agents which have different explicit

goals that represent different parts of the process of

music composition. An example is given of an agent

whose goal is to reduce sound object density if the

population of the system’s “sound landscape”

becomes too “cluttered”; another is given of an agent

who does the opposite. Both agents would take into

account the musical context while doing this. The

researchers explicitly intend to utilise emergence to

generate interesting music. This is a similarity with

the system in this paper, though key differences are:

the agents here act on a single music composition

together, whereas agents in this paper each have their

own repertoires which can develop in parallel, and do

not have explicit and distinct goals.

 Miranda‟s system [2] generates musical motifs in a

way designed to study the evolution of culture. In this

case the agents use a two-way imitation procedure to

bond socially. Agents can store a repertoire of tunes

and have a basic biological model of an adaptive voice

box and auditory system. Agents pick other agents to

interact with randomly.

 When two agents A and B interact the following

process occurs: if agent A has tunes in its repertoire it

picks one randomly and sings it, if not then it sings a

random tune. These tunes are three notes long and do

not grow in length. Agent B compares the tune from A

to its own repertoire and if it finds one similar enough,

plays it back to agent B as an attempted imitation.

Then agent B makes a judgement about how good the

imitation is. If it is satisfied with the imitation it makes

a “re-assuring” noise back to agent A, otherwise it

does not. Based on the success of the imitation Agents

A and B update their repertoires and their voice box

settings to try and improve their chances of socially

bonding in later interactions – e.g. by deleting or re-

enforcing tunes, or making random deviations to their

voice box parameters. The aim of the system is to see

how the repertoire is generated and affected under

such social pressures. As a result of the social bonding

interactions a community repertoire begins to emerge.

 Gong et al [3] produced a simple music composing

system with a similar purpose to Miranda [2] -

investigating the emergence of musical culture. The

agents start with a set of random motifs, together with

different agents being equipped with distinct but very

simple aesthetic evaluation functions (for rhythm,

pitch, etc.). An agent plays its tune to another agent

and if the second agent finds the tune unpleasant, it

modifies it (based on its musical evaluation), and plays

it back to the first agent. If the first agent thinks the

modified tune is better than its original, it deletes its

original and stores the modified version. As agents

interact this leads to “more pleasant” motifs emerging.

Also, using an interaction-history measure, the social

link between first and second agent is strengthened so

that they are more likely to interact in the future.

However if the first agent does not prefer the modified

System Complexity Homog /

Het

Comm Tune Initial

Hierarch

y

Real

time

Size Model / Func

Swarm Music Low Het No 1 Flat Y 21 F

Ant Colony Music Low Homog No 1 Flat Y F

Swarm Orchestra Low Homog No 1 Flat Y F

Society of Music Agents Low Homog Sync 1 Flat N F

MMAS Higher Het ASync 1 Flat Y 8 F

Musical Agents Higher Het Async 1 Flat Y F

Andante Higher Het Async 1 Flat Y F

VirtuaLatin Higher Het Sync 1 Hierarchy N 1 F

MAMA Higher Het ASync 1 Hierarchy Y F

Kinetic Engine Higher Het ASync 1 Hierarchy Y F

CinBalada Higher Het ASync 1 Flat N F

AALIVE Higher Het ASync 1 Hierarchy Y F

NetNeg Higher Het ASync 1 Hierarchy N 3 F

Inmamusys Higher Het Sync 1 Hierarchy N 9 F

CAC Multi-Agent Medium Het ASync 1 Flat N 6 F

Critic Culture Medium Hom Sync Multi Flat N M

Miranda Culture Medium Hom Sync Multi Flat N 5 M

Artificial Musical Society Medium Het Sync 1 Flat Y F

System in this Paper Medium Hom ASync Multi Flat N 10 F

tune to its own version, it discards it and the link

between the two agents is not strengthened. It was

found that in the emergent social network the agents

tended to cluster according to their aesthetic

preference function. This system has a couple of

similarities to the one in this paper: it utilizes MAS

social network/trust techniques to decide who interacts

with whom, and in each interaction agents vary their

repertoire based on their opinion of the other agent‟s

repertoire. The key differences between this system

and the one in this paper is that agents in this paper

have no explicit evaluative melodic intelligence, and

they can extend the number of notes in their repertoire;

and finally the social network in this paper is used to

generate music structure within an agent‟s repertoire

not to experiment with the clustering of agents

according to their repertoires.

 The A-Rhythm [4] system sets out to examine the

application of multi-agent systems to algorithmic

composition, but has not yet fulfilled that goal. Current

papers focus on, like Miranda and Gong et al.,

investigating the emergence of social clusters, and are

solely based on rhythmic repertoire. A-Rhythm has

some similarities to the system in this paper: the agents

communicate and process one at a time serially (rather

than in parallel) and their musical content grows

longer. However A-Rhythm focuses on rhythm, i.e. is

non-pitched. Also the similarity measures are more

directly based on the music, rather than affective

content of the music. Finally A-Rhythm uses measures

for the “popularity” of rhythms in an agent’s

repertoire, but not for the “popularity” of agents.

Agents in the system can transform their repertoires

based on interaction – using certain rhythmic

transformation rules (rather than the affective-based

transformations used in this paper). A number of

experiments are done based on different interaction

approaches, and the resulting population and

repertoire dynamics are examined, showing the

potential for the emergence of structured rhythmic

repertoires.

5. SYSTEM OVERVIEW

Agents in this system are initialized with a tune

contain a single note, and over the interaction period

each agent builds longer tunes through interaction.

Figure 1 shows a static representation of a collection

of agents.

 A summary of the system is given below based on

some of its key features:

1. Size – usually consists of a small-medium size (2 to

16) collection of agents, but can be more.

2. Music - Each agent can perform monophonic MIDI

tunes and learn monophonic tunes from other agents.

3. Affective Performance - An agent has an affective

state (an “artificial emotional state”) which affects

how it performs the music to other agents; e.g. a

“happy” agent will perform their music more

“happily.

Figure 1. Six agents in a variety of affective states with one

agent performing.

4. Affective Influence - An agent’s affective state is in

turn affected by the affective content of the music

performed to it; e.g. if “sad” music is performed to a

“happy” agent, the agent will become a little more

“sad”.

5. Tune Learning - Agents will only learn tunes

performed to them if the affective content of the tune

is similar enough to their current affective state;

learned tunes are added to the end of their current

tune.

6. Agent Interaction Coefficient - Agents develop

“opinions” of other agents that perform to them,

depending on how much the other agents can help

their tunes grow. These opinions affect who they

interact with in the future.

 Each agent contains three data structures. The first

is an Agent Tune, a monophonic tune in MIDI format.

The second is an Agent Affective State – a number

pair [valence, arousal] representing the artificial

affective state of the agent based on the

valence/arousal model of affectivity. The most

common dimensional affective representation in

computer music is the valence / arousal 2D emotional

representation [5]. In this model, the first dimension

being how positive or negative the emotion is

(Valence), and the second dimension being how strong

the emotion is (Arousal). “Valence” refers to the

positivity or negativity of an emotion – e.g. a high

valence emotion is joy or contentment, a low valence

one is sadness or anger. Arousal refers to the arousal

level of the emotion – for example joy has a higher

arousal than happiness (though both have high

valence), and anger a higher arousal than sadness

(though both have low valence).

 The final agent data structure is an Interaction

Coefficient List, which is a list of interaction

coefficients of all the other agents in the collection –

these are non-negative floating point numbers which

measure how “popular” the agent finds each of the

other agents. The concept of Interaction Coefficient is

used here to attempt to create emergent compositional

hierarchies (as will be demonstrated). However

another way of thinking of Interaction Coefficient at

this point is to consider an imagined “motivation” for

an agent. The aim of this MAS is – starting with each

agent having a single note - to build actual melodies.

So an agent should “want” notes. An agent A‟s

Interaction Coefficient measure of another, say Agent

B, is based on the note count and number of

performances it has added from B to its own tune.

 An agent also has a number of internal processing

functions. The Performance Output Choice involves

choosing which agent to perform to, based on its

Interaction Coefficient list of agents. It will only

perform to agents it finds “popular enough”. The

Performance Output Transform involves the agent

playing its single stored tune as a performance to

another agent, with musical performance features

based on its own current affective state. The

Performance Input Estimate allows the agent to

estimate the affective content of a tune performed to it

by another agent, and adjust its own internal affective

state based on the affective content. An agent‟s

Performance Input Choice involves it deciding

whether to store a performance from another agent,

and is based on: (a) the affective content of that

performance, and (b) how long the listening agent‟s

current tune is (an agent have a finite tune length

memory which can fill up). The Performance Input

Interaction Coefficient system lets the agent update its

Interaction Coefficient measure of another agent based

on that agent‟s performance. Finally the Performance

Input Add function lets the agent store a performance

by concatenating it to the end of its current tune. An

example interaction cycle is shown below. This cycle

is repeated until the desired compositional result is

reached. It starts by selecting the next performing

agent, say Agent A:

1. If Agent A‟s Interaction Coefficient measure for

Agent B is below Agent A‟s average Interaction

Coefficient for other agents, then ignore Agent B and

select the next listener agent, repeating this test.

2. Agent A performs its tune TA, adjusting the tune

based on its own current affective state to give

performance PA.

3. Agent B estimates the affective content of Agent

A‟s performance PA.

4. If B‟s estimated affective content of PA is close to

its own current affective state, Agent B concatenates

PA to the end of its own tune TB. Or to put it another

way: TB = TB + PA.

5. Agent B adjusts its own affective state towards its

estimate of the affective content of performance PA.

6. Agent B updates its Interaction Coefficient measure

of Agent A proportional to the number of notes

provided by Agent A in performance PA.

7. Agent A turns its attention iteratively to the next

agent, and returns to Step 1. Note: once all agents

have been considered as candidates for performance

by Agent A, a new performer agent is iteratively

selected to perform , say agent B, and to listen, say

agent C.

6. MUSIC TRANSFORMS

Before performing its tune to another agent, an agent

will transform its tune in a “compositional” way, and

then transform it using expressive performance

transformations. The compositional trasnsforms are

defined as transformations on the agent‟s MIDI tune

that are not of the size and type found in Computer

Systems for Expressive Performance (CSEMPS) [5].

CSEMPs create patterns in music involve micro-

changes in timing, loudness and pitch. In systems such

as the Computational Music Emotion Rule System [6]

which perform both compositional and expressive

performance transformations, the compositional

transformations involve larger changes in pitch (i.e. a

semitone or more) and timing. The compositional

transformations used in the system in this paper are

based on two sources: CMERS and Juslin‟s [7] paper

on musical features and emotional expression. Two

types of compositional transformations are applied -

Linear Feature Transforms and a Key Mode

Transform. The linear transformations - from [6] and

[7] act on: (a) timing onset and (b) duration are

inversely proportional to arousal, (c) loudness is

proportional to valence and arousal, and (d) pitch is

proportional to valence and arousal (but with valence

having twice as much influence). These are

implemented using linear equations described in

equations (1) to (4).

(1)

 (2)

 (3)

 (4)

When an agent A is about to perform and has a

particular level of valence (valenceA) and arousal

(arousalA), it will first compositionally transform its

stored tune based on the effects of equations (1) to (4).

The primed values on the left hand side of the

equations are the defining features of the

compositionally transformed music, and are used to

unambiguously generate a transformed MIDI file. The

pre-transformation values IOIi(A), duri(A), loudi(A),

and pitchi(A) are: the inter-onset interval between note

i and the next note i+1, the note duration in seconds,

the MIDI loudness, and MIDI pitch of the i-th musical

note of Agent A‟s stored tune. The theta values – (θioi,

θloud, and θpitch) – define the affective sensitivity of the

transformation – i.e. how much affect a change in

Agent A‟s valence or arousal will have on the

transformation.

 They are the maximum variation percentage bars

around the current feature value. For example if theta

is 0.25, then by Equation (1) the onset will vary from

25% below its current value to 25% above its current

value when arousal varies from -1 to 1. If a

transformation goes above the maximum MIDI value

(127) then it is set to 127. Similarly if it goes below 1

it is set to 1. Note θioi is used both for onsets and

duration so that as gaps between notes are increased or

decreased, the duration of the same notes is increased

and decreased by the same amount.

 For positive emotion a major key is utilized and for

negative emotion with negative arousal (e.g.

“sadness”) a minor key is utilized. For negative

valence and positive arousal (e.g. “Anger” or “Fear”)

each note is transformed to C minor then moved

alternately up or down a semitone; this is designed to

inject an “atonal” element to the music. The transform

is algorithmic and deterministic – it searches either

side of the current notes for a note in the new mode

which does not violate a MIDI boundary (i.e. not out

of the MIDI 128 parameter range). So suppose an

agent A has stored a tune from a “happy” agent which

is a major key. If agent A then performs its tune while

“sad” it will convert all of its tune, include the major

part it received from another agent, into the minor

mode. The current version in this paper has no ability

for actual key composition functionality, hence the

reason for using only C major and C minor.

 The Expressive Performance transformations are

not detailed in this paper. These are the micro

transformations which one often hears a human

making a fixed score – speeding up and slowing

down, and getting louder or quieter, without any

explicit structure in the score. There is not space in

this paper to detail all elements of the expressive

performance algorithms used, and their effectiveness

is not fully tested at this stage. The method used is

based on Director Musices rules for affective

expressive performance [8]. Specifically the rules

Phrase Arch, High Loud, Duration Contrast,

Punctuation, and Duration Contrast Articulation.

These are also similar to the rules used in [6] to

augment the compositional emotional transforms. In

this paper a similar method is also used to implement

the combining of the compositional and performative

elements. The key difference to [6] is that Livingstone

requires the transformed tunes to first have a structural

analysis. Whereas the system in this paper utilizes the

key advantage of applying expressive performance

during composition: that a structural analysis is no

longer needed [5].

7. TUNE AFFECTIVE ESTIMATION

A linear equation is used to model the listening agent‟s

(say agent B) affective estimate of a performance by

agent A – this is shown in equations (5) and (6).

valenceEstB = xpmean(pitchA) + xlmean(loudA) +

 xkmean(keyModeA) + xIOImean(IOIA) + x0 (5)

 arousalEstB = ypmean(pitchA) +

 ylmean(loudA) + yIOImean(IOIA) + y0 (6)

 In these equations pitchA and loudA refer to the

average MIDI pitch and MIDI loudness of an agent

A‟s performance (heard by B). keyIndexA is defined as

having value 2 for a minor key, and 1 for a major key;

and the key mode of A‟s tune is estimated using a key

profile-based algorithm [9]. The x and y coefficients in

the Equations are constants estimated by linear

regression.

 These are estimated in a one-off process as follows.

A set of 1920 random MIDI files was generated, of

random lengths between 1 and 128 notes. Each MIDI

file was transformed for 10 known and equally spaced

valence and arousal values between -1 and 1 using

transformation equations (1) to (4), and key mode

transformations. Then a linear regression was run on

the resulting transformed MIDI files against the known

arousal and valence values – based on equations (5)

and (6). The resulting coefficients were tested and the

average percentage errors – when tested on a separate

1920 transformed random files - were 10% for valence

and 9% for arousal. These are considered to be

sufficiently accurate given that actual human musical

emotion recognition error rates can be as high as 23%

[5].

 It will be noted that only the compositional, and not

the expressive performance, transformations are used

in the regression above. This was because it was

desired to keep the model flexible for use with and

without expressive performance, since a composer

may wish to compose a tune without expressive

performance. It was found that using the Linear

Estimator with expressive performance

transformations overlaid on agent B‟s performance did

not cause excessive errors in affective estimate by

agent A.

 The Linear Estimator is used in two aspects of the

agents – firstly for an agent to decide whether or not to

add a performance to its own tune, and secondly for an

agent to be influenced by the affective content of a

performance it has heard. Equations (7) and (8) below

are used to update the valence and arousal of agent B

after a performance from agent A. The γ (Gamma)

constant - between 0 and 1 - defines how sensitive an

agent is to affective state change – i.e. the amount of

change to valence and arousal. If it is set to 1 then the

new valence and arousal values will be totally changed

to the estimated values of the performance the agent

has just heard. A value of 0 will lead to no change.

Values between 0 and 1 will cause the estimate to have

a proportionally greater effect.

 (7)

 (8)

 Once the agent B has decided whether or not to

append the performance from A (and if so, has done

so), it will update its valence and arousal based on

Equations (7) and (8). In future, when it next performs

a tune, it will transform it based on its new valence

and arousal state. It is designed so that through this

series of updating affective states and the agent tune

communication and system, new musical structures

will emerge.

8. INTERACTION COEFFICIENT

Before an Agent A performs to an Agent B it

compares its Interaction Coefficient measure of Agent

B to the average of its Interaction Coefficient for other

agents:

IC(A,B) > mean[IC(A, all agents)] (9)

 If it is not, then it does not perform to Agent B and

moves on to the next agent. The increase in Interaction

Coefficient is proportional to the length of tune it has

added. So the more notes in Agent A‟s performance,

the greater its Interaction Coefficient will be viewed

by Agent B. The parameter d is a constant called the

Interaction Coefficient Update Rate.

IC(B,A) = IC(B,A) + d.N (10)

 This can be visualised as an Agent‟s basic resources

being tunes - so the more notes in an Agent‟s tune, the

greater its potential Interaction Coefficient to other

agents. However the actual reason for including

Interaction Coefficient functionality, and making

Interaction Coefficient proportional to the number of

notes in a performing agent‟s tune is primarily to

generate a “social” hierarchy amongst the agents

which influences the hierarchy of the composed music.

Bearing in mind that an agent will only perform to

other agents with a high enough Interaction

Coefficient, it can be seen that:

 Agents which perform more than listen will

tend to have lower interaction coefficients

 Agents which mostly listen and store will

have longer tunes and higher interaction

coefficients

 Agents with higher interaction coefficients

will tend to be selected as listeners more

often

 So the system is designed to turn the agent

population into a set of agents who tend to perform

and have shorter tunes, and a set of agents who tend to

listen and store. The aim is for lower Interaction

Coefficient agents to be focused on providing lower

elements of the musical hierarchy.

9. AN EXAMPLE CYCLE

An example cycle will now be shown. In this example

we examine three agents: (a) Agent 1 is the performer

and starts by considering performing to Agent 2; (b)

Agent 1’s measure of Agent 2’s Interaction

Coefficient is very low in this example; (c) Agent 1’s

measure of Agent 3’s Interaction Coefficient is very

high; (d) Agent 1’s affective state is high valence and

high arousal – i.e. “happy”; Agent 3’s affective state

is low valence and low arousal – i.e. “sad”.

1. Because Agent 1’s Interaction Coefficient of

Agent 2 is very low, Agent 1 does not even

perform to Agent 2. It selects the next Agent

iteratively – Agent 3.

2. Agent 1’s view of Agent 3’s Interaction

Coefficient is very high – so Agent 1 performs its

tune T1, adjusting it to make it “Happier”

because of its high valence and arousal state,

giving a performance P1.

3. Agent 3 estimates the affective content of Agent

1’s performance P1 and gets a result of high

valence and arousal – i.e. it estimates it is a

“happy” performance.

4. Because Agent 3’s affective estimate of Agent

1’s tune is high valence and arousal but Agent 3’s

state is low valence and arousal – i.e. very

different to “happy” - Agent 3 discards Agent 1’s

tune.

5. However Agent 3 still adjusts it owns affective

state towards its estimate of the affective content

of performance P1 i.e. it becomes a little more

“happy”.

6. Neither Agent makes any adjustment to their

Interaction Coefficient measures since no

performances were stored.

7. Agent 1 remains the performer, and the next

agent is iteratively chosen to listen – i.e. Agent 4.

10. EXAMPLE RESULTS

(Note: In this system there are a number of parameters

which need to be set; it is beyond the scope of this

paper to describe all of them. Those not mentioned

explicitly here were set to default values.) The best

way to indicate that this system can produce non-

trivial melodies, in spite of its lack of melodic

intelligence is to explore the space of what sort of

pitches can be produced by the system. This is

partially done in Figures 2 to 4. This is 8 agents run

for 10 cycles. In each cycle an agent performs to all

other 7 agents, depending on their interaction

coefficient. Then in the next cycle the second agent is

selected to perform, and so on moving through the

agents. At the start agents were initialized with certain

affective states and these were allowed to evolve

through the interaction cycles. Four initializing states

were used with different levels for [Valence, Arousal]

pairs. These were: “Happy” = [0.5, 0.5]; “Sad” = [-

0.5, -0.5]; “Angry” = [-0.5, 0.5]; Tender = [0.5; -0.5].

 The shown tunes and a number of others were

played to 10 listeners in tests. It was found that when

at least 6 out of the 8 agents had the same initial

valence and arousal, then the listeners had a 71%

chance of detecting that same valence in the final tune,

and an 82% chance of detecting that same arousal in

the tune.

11. HIERARCHICAL STRUCTURE RESULTS

To display the effects of Interaction Coefficient an 8

agent system was used with equally spread agent

initial affective states – i.e. 2 sad, 2 happy, 2 angry, 2

tender, and run for 32 cycles. The Interaction

Coefficient update rate was set to 0.2; this is the rate

at which an agent’s Interaction Coefficient Measure

of other agents is updated. At the end of the runs the

number of notes the agents 1 to 8 have is respectively:

291, 102, 102, 102, 102, 102, 18, and 5. It was found

that this relates to the Interaction Coefficient – the

higher an agent’s final Interaction Coefficient the

higher its note count. Agent 1 ended up with the

highest, followed by Agents 2 to 6 and agents 7 and 8

had the lowest. The pattern of interaction can be seen

from another perspective in Table 2. It can be seen

that smaller Interaction Coefficient agents tend to give

out tunes, while the larger Interaction Coefficient

agents tend to receive tunes. The lower numbered

agents have higher Interaction Coefficient because of

the ordering of agent interaction in each cycle. The

lower agents will be performers first, and have a

chance to build up their IC. Then when they become

listeners (receivers) these lower numbered agents will

receive larger tunes back, and their Interaction

Coefficient will increase as a result. To see how this

creates the hierarchical structure, consider that by

Figure 2. 6 Angry, 2 Sad initialized

Figure 3. 6 Sad, 2 Happy initialized

Figure 4. 6 Happy, 2 Angry initialized

Table 2 Agent 1‟s final tune could be written as a

concatenation of subtunes:

1021324354657629310411512613217318

where each number indicates the agent who

performed, and the subscripts are the cycle numbers

(an agent‟s tune varies over different cycles – e.g. 318

is not the same 32.)

 Because the MAS is a closed system, all tunes in

this structure are the result of a transformation on

another agent‟s tune. So for example:

0 20 40 60 80 100 120 140

Time in seconds

P
it
c
h

Agent 6, Cycle 10

0 5 10 15 20 25

Time in seconds

P
it
c
h

Agent 6, Cycle 10

0 5 10 15 20 25 30

Time in seconds

P
it
c
h

Agent 6, Cycle 10

Table 2. Pattern of Interaction

21 = 2010‟

32 = 3010‟‟

 …

76 = 7010‟‟‟

 Where the primes („) represent transformations on

Agent 1‟s tune due to Agent 1‟s affective state at the

time. In the next round of tunes being given to Agent 1

this gives:

29 = 2177‟188‟ = (2010‟) 77‟188‟

 This expansion can be continued until there is a full

description of Agent 1‟s tunes based on the way in

which the tune grows. This description will show the

building structure of the tune. (It will not necessarily

show the perceptual structure of the tune – this is not

claimed, but it will show how the tune was built from

the motifs and phrases etc of other agents). This

structure is clearly a function of the agent interaction

hierarchy, and as has been seen this hierarchy is

strongly influenced by the Interaction Coefficient

functionality. Hence this supports the idea that the

Interaction Coefficient provides a non-affective-based

method for generating coherent hierarchical structure

in the tunes, based on the emerging interaction

structure in the multi-agent system.

12. CONCLUSIONS

A multi-agent system has been presented which

generates melody pitch sequences with a hierarchical

structure. The system has no explicit melodic

intelligence and generates the pitches as a result of

emotional influence and communication between

agents, and the hierarchical structure is a result of the

emerging agent social structure. Another key element

was that the system is not a mapping from multi-agent

interaction onto musical features, but actually utilizes

music for the agents to communicate emotions. Each

agent in the society learns its own growing tune

during the interaction process.

13. REFERENCES

[1] Dahlstedt, P., McBurney, P., “Musical agents:

Toward Computer-Aided Music Composition

Using Autonomous Software Agents”, Leonardo

39, 469-470, 2006

[2] Miranda, E.R., “Emergent Sound Repertoires in

Virtual Societies”, Computer Music Journal 26,

77-90, 2002

[3] Gong, T., Zhang, Q., Wu, H., “Music evolution

in a complex system of interacting agents”,

Proceedings of the 2005 IEEE Congress on

Evolutionary Computation, Edinburgh, UK, 2005

[4] Martins, J.M., Miranda, E.R., “Emergent

Rhythmic Phrases in an A-Life Environment”,

Proceedings of ECAL 2007 Workshop on Music

and Artificial Life (MusicAL 2007), Portugal,

2007

[5] Kirke, A.J., Miranda, E.R.,” A Survey of

Computer Systems for Expressive Performance

of Music”, ACM Computing Surveys 42, 3:1,

2009

[6] Livingstone, S., Muhlberger, R., Brown, A.,

Thompson, W., “Changing Musical Emotion: A

Computational Rule System for Modifying Score

and Performance”, Computer Music Journal 34,

p41, 2010

[7] Juslin, P. “From Mimesis to Catharsis:

expression, perception and induction of emotion

in music”, In Music Communication, D. Miell, R.

Macdonald, And D.J. Hargreaves, Eds. Oxford

University Press, 85-116, 2005

[8] Friberg, A., Bresin, R., Sundberg, J., “Overview

of the KTH rule system for musical

performance”, Advances in Cognitive Psychology

2, 145-161, 2006

[9] Krumhansl, C., Kessler, E., “Tracing the

dynamic changes in perceived tonal organization

in a spatial representation of musical keys”,

Psychological Rev 89, 334-368, 1982

Cycles 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 24 32

Agent

1 2 3 4 5 6 2 3 4 5 6 2 3

2 1 7 8 1

3 1 7 8 1

4 1 7 8 1

5 1 7 8 1

6 1 7 8 1

7 8 8 8 8

8 7 7

