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ABSTRACT 

A multi-agent system is presented which generates 

melody pitch sequences with a hierarchical structure. 

The system has no explicit melodic intelligence and 

generates the pitches as a result of emotional influence 

and communication between agents, and the hierarchical 

structure is a result of the emerging agent social 

structure. Another key element is that the system is not a 

mapping from multi-agent interaction onto musical 

features, but actually utilizes music for the agents to 

communicate emotions. Each agent in the society learns 

its own growing tune during the interaction process. 

1. INTRODUCTION 

The generation of novelty is at the heart of many 

computer-aided composition (CAC) systems. Without 

some way of generating new material, a CAC will churn 

out the same material time after time. To avoid this, 

many systems utilize random numbers. A more recent 

alternative is the use of complexity which is ordered but 

unpredictable. Popular types of systems that generate 

such complexity are found in the field of Artificial Life 

or A-Life [1]. A-Life investigates systems related to life, 

their processes, and evolution; it does this most often 

through computer simulations and models – for example 

Cellular Automata. Many A-life systems have two 

elements in common with have made them attractive to 

composers for use in CAC: they generate complexity 

with order and structure, and they inspire composers by 

their variety of patterns. So although A-Life systems can 

generate unexpected complexity, there is an inherent 

order – they are not solely random. This is often called 

“Emergent” behaviour. 

     One field which has a large intersection with Artificial 

Life is Multi-agent Systems (MAS), which (along with 

computer-aided composition and computer expressive 

performance) is one of the 3 key areas utilized in this 

paper. Each agent in an MAS is a digital entity which can 

interact with other agents to solve problems as a group, 

though not necessarily in an explicitly co-ordinated way. 

What often separates agent-based approaches from 

normal object-oriented or modular systems is their 

emergent behaviour [1]. The solution of the problem 

tackled by the agents is often generated in an unexpected 

way due to their complex interactional dynamics, though 

individual agents may not be that complex. As with the 

application of other A Life systems in CAC, these social 

dynamics can be both artistically functional – for 

example each agent in an ensemble can contribute a 

motif or play an artificial instrument in a piece of music; 

or artistically motivational, inspiring an algorithmic 

composer to produce the “music of artificial societies”.  

In this paper we present a new MAS approach for 

melody generation which, unlike much A-Life CAC 

work, is not a mapping from multi-agent interaction onto 

musical features, but actually utilizes music for the 

agents to communicate emotions. Each agent in the 

society learns its own growing monophonic MIDI tune 

during the interaction process. 

2. MULTI-AGENT SYSTEMS FOR MUSIC 

Table 1 shows the majority of multi-agent systems for 

creating music from past research. It is designed to give 

quick familiarity with a number of key issues found in 

musical multi-agent systems. The fields are explained 

below: 

• “Complexity” – What is the level of processing in 

individual agents, how complex are they?  

• “Homog / Het” – are the agents in the MAS 

homogeneous or heterogeneous (i.e. do agents all start 

out the same, or are some different)? 

• “Comm” – do the agents communicate, and if so do 

they do it synchronously or asynchronously (i.e. do they 

take it in turns to communicate and process, or do they 

do it concurrently)? 

• “Initial Hierarchy” – is there a hierarchy of 

planning/control for the agents; are some agents 

dependent on others? Can some agents control others? 

• “Tune” – Does the system generate multiple 

composition alternatives when it completes processing, 

or a single composition? 

• “Real-time” – when the agents are activated, is the 

music generated in real-time? 

• “Size” – what is the number, or average number, of 

agents in the system? 



  

 

 

Table 1. Musical Multi-Agent Systems 

 

• “Model / Func” – is the system designed solely to 

model some element of music, or as a computer-aided 

composition system? 

   The above choice of properties is also because they 

are also some of the key defining features of any 

MAS. The system in this paper is a non-realtime 

system which works with a small to medium number 

of agents (i.e. not hundreds of agents), it generates 

multiple tunes in parallel, and it is focused on 

computer-aided composition not on modelling the 

composition process or musical culture. 

4. RELATED WORK 

The four closest systems to the one in this paper are 

now examined a little more closely. The Dahlstedt 

and McBurney system [1] seems to be more a 

proposal that has never been implemented. The 

approach is to use agents which have different explicit 

goals that represent different parts of the process of 

music composition. An example is given of an agent 

whose goal is to reduce sound object density if the 

population of the system’s “sound landscape” 

becomes too “cluttered”; another is given of an agent 

who does the opposite. Both agents would take into 

account the musical context while doing this. The 

researchers explicitly intend to utilise emergence to 

generate interesting music. This is a similarity with 

the system in this paper, though key differences are: 

the agents here act on a single music composition 

together, whereas agents in this paper each have their 

own repertoires which can develop in parallel, and do 

not have explicit and distinct goals. 

   Miranda‟s system [2] generates musical motifs in a 

way designed to study the evolution of culture. In this 

case the agents use a two-way imitation procedure to 

bond socially. Agents can store a repertoire of tunes 

and have a basic biological model of an adaptive voice  

 

box and auditory system. Agents pick other agents to 

interact with randomly.  

  When two agents A and B interact the following 

process occurs: if agent A has tunes in its repertoire it 

picks one randomly and sings it, if not then it sings a 

random tune. These tunes are three notes long and do 

not grow in length. Agent B compares the tune from A 

to its own repertoire and if it finds one similar enough, 

plays it back to agent B as an attempted imitation. 

Then agent B makes a judgement about how good the 

imitation is. If it is satisfied with the imitation it makes 

a “re-assuring” noise back to agent A, otherwise it 

does not. Based on the success of the imitation Agents 

A and B update their repertoires and their voice box 

settings to try and improve their chances of socially 

bonding in later interactions – e.g. by deleting or re-

enforcing tunes, or making random deviations to their 

voice box parameters. The aim of the system is to see 

how the repertoire is generated and affected under 

such social pressures. As a result of the social bonding 

interactions a community repertoire begins to emerge.  

   Gong et al [3] produced a simple music composing 

system with a similar purpose to Miranda [2] - 

investigating the emergence of musical culture. The 

agents start with a set of random motifs, together with 

different agents being equipped with distinct but very 

simple aesthetic evaluation functions (for rhythm, 

pitch, etc.). An agent plays its tune to another agent 

and if the second agent finds the tune unpleasant, it 

modifies it (based on its musical evaluation), and plays 

it back to the first agent. If the first agent thinks the 

modified tune is better than its original, it deletes its 

original and stores the modified version. As agents 

interact this leads to “more pleasant” motifs emerging. 

Also, using an interaction-history measure, the social 

link between first and second agent is strengthened so 

that they are more likely to interact in the future. 

However if the first agent does not prefer the modified 

System Complexity Homog / 

Het 

Comm Tune Initial 

Hierarch

y 

Real 

time 

Size Model / Func 

Swarm Music Low Het No  1 Flat Y 21 F 

Ant Colony Music Low Homog No 1 Flat Y  F 

Swarm Orchestra Low Homog No 1 Flat Y  F 

Society of Music Agents Low Homog Sync 1 Flat N  F 

MMAS Higher Het ASync 1 Flat Y 8 F 

Musical Agents Higher Het Async 1 Flat Y  F 

Andante Higher Het Async 1 Flat Y  F 

VirtuaLatin Higher Het Sync 1 Hierarchy N 1 F 

MAMA Higher Het  ASync 1 Hierarchy Y  F 

Kinetic Engine Higher Het ASync 1 Hierarchy Y  F 

CinBalada Higher Het ASync 1 Flat N  F 

AALIVE Higher Het ASync 1 Hierarchy Y  F 

NetNeg Higher Het ASync 1 Hierarchy N 3 F 

Inmamusys Higher Het Sync 1 Hierarchy N 9 F 

CAC Multi-Agent Medium Het ASync 1 Flat N 6 F 

Critic Culture Medium Hom Sync Multi Flat N  M 

Miranda Culture Medium Hom Sync Multi Flat N 5 M 

Artificial Musical Society Medium Het Sync 1 Flat Y  F 

System in this Paper Medium Hom ASync Multi Flat N 10 F 



  

 

 

tune to its own version, it discards it and the link 

between the two agents is not strengthened. It was 

found that in the emergent social network the agents 

tended to cluster according to their aesthetic 

preference function. This system has a couple of 

similarities to the one in this paper: it utilizes MAS 

social network/trust techniques to decide who interacts 

with whom, and in each interaction agents vary their 

repertoire based on their opinion of the other agent‟s 

repertoire. The key differences between this system 

and the one in this paper is that agents in this paper 

have no explicit evaluative melodic intelligence, and 

they can extend the number of notes in their repertoire; 

and finally the social network in this paper is used to 

generate music structure within an agent‟s repertoire 

not to experiment with the clustering of agents 

according to their repertoires. 

    The A-Rhythm [4] system sets out to examine the 

application of multi-agent systems to algorithmic 

composition, but has not yet fulfilled that goal. Current 

papers focus on, like Miranda and Gong et al., 

investigating the emergence of social clusters, and are 

solely based on rhythmic repertoire. A-Rhythm has 

some similarities to the system in this paper: the agents 

communicate and process one at a time serially (rather 

than in parallel) and their musical content grows 

longer. However A-Rhythm focuses on rhythm, i.e. is 

non-pitched. Also the similarity measures are more 

directly based on the music, rather than affective 

content of the music. Finally A-Rhythm uses measures 

for the “popularity” of rhythms in an agent’s 

repertoire, but not for the “popularity” of agents. 

Agents in the system can transform their repertoires 

based on interaction – using certain rhythmic 

transformation rules (rather than the affective-based 

transformations used in this paper). A number of 

experiments are done based on different interaction 

approaches, and the resulting population and 

repertoire dynamics are examined, showing the 

potential for the emergence of structured rhythmic 

repertoires. 

5. SYSTEM OVERVIEW 

Agents in this system are initialized with a tune 

contain a single note, and over the interaction period 

each agent builds longer tunes through interaction. 

Figure 1 shows a static representation of a collection 

of agents. 

   A summary of the system is given below based on 

some of its key features:  

1. Size – usually consists of a small-medium size (2 to 

16) collection of agents, but can be more. 

2. Music - Each agent can perform monophonic MIDI 

tunes and learn monophonic tunes from other agents. 

3. Affective Performance - An agent has an affective 

state (an “artificial emotional state”) which affects 

how it performs the music to other agents; e.g. a 

“happy” agent will perform their music more 

“happily. 

 

 

 

 

 

 

 

 

 

Figure 1. Six agents in a variety of affective states with one 

agent performing. 

 

4. Affective Influence - An agent’s affective state is in 

turn affected by the affective content of the music 

performed to it; e.g. if “sad” music is performed to a 

“happy” agent, the agent will become a little more 

“sad”. 

5. Tune Learning - Agents will only learn tunes 

performed to them if the affective content of the tune 

is similar enough to their current affective state; 

learned tunes are added to the end of their current 

tune. 

6. Agent Interaction Coefficient - Agents develop 

“opinions” of other agents that perform to them, 

depending on how much the other agents can help 

their tunes grow. These opinions affect who they 

interact with in the future.  

 

     Each agent contains three data structures. The first 

is an Agent Tune, a monophonic tune in MIDI format. 

The second is an Agent Affective State – a number 

pair [valence, arousal] representing the artificial 

affective state of the agent based on the 

valence/arousal model of affectivity. The most 

common dimensional affective representation in 

computer music is the valence / arousal 2D emotional 

representation [5]. In this model, the first dimension 

being how positive or negative the emotion is 

(Valence), and the second dimension being how strong 

the emotion is (Arousal). “Valence” refers to the 

positivity or negativity of an emotion – e.g. a high 

valence emotion is joy or contentment, a low valence 

one is sadness or anger. Arousal refers to the arousal 

level of the emotion – for example joy has a higher 

arousal than happiness (though both have high 

valence), and anger a higher arousal than sadness 

(though both have low valence). 

    The final agent data structure is an Interaction 

Coefficient List, which is a list of interaction 

coefficients of all the other agents in the collection – 

 



  

 

 

these are non-negative floating point numbers which 

measure how “popular” the agent finds each of the 

other agents. The concept of Interaction Coefficient is 

used here to attempt to create emergent compositional 

hierarchies (as will be demonstrated). However 

another way of thinking of Interaction Coefficient at 

this point is to consider an imagined “motivation” for 

an agent. The aim of this MAS is – starting with each 

agent having a single note - to build actual melodies. 

So an agent should “want” notes. An agent A‟s 

Interaction Coefficient measure of another, say Agent 

B, is based on the note count and number of 

performances it has added from B to its own tune. 

    An agent also has a number of internal processing 

functions. The Performance Output Choice involves 

choosing which agent to perform to, based on its 

Interaction Coefficient list of agents. It will only 

perform to agents it finds “popular enough”. The 

Performance Output Transform involves the agent 

playing its single stored tune as a performance to 

another agent, with musical performance features 

based on its own current affective state. The 

Performance Input Estimate allows the agent to 

estimate the affective content of a tune performed to it 

by another agent, and adjust its own internal affective 

state based on the affective content. An agent‟s 

Performance Input Choice involves it deciding 

whether to store a performance from another agent, 

and is based on: (a) the affective content of that 

performance, and (b) how long the listening agent‟s 

current tune is (an agent have a finite tune length 

memory which can fill up). The Performance Input 

Interaction Coefficient system lets the agent update its 

Interaction Coefficient measure of another agent based 

on that agent‟s performance. Finally the Performance 

Input Add function lets the agent store a performance 

by concatenating it to the end of its current tune. An 

example interaction cycle is shown below. This cycle 

is repeated until the desired compositional result is 

reached. It starts by selecting the next performing 

agent, say Agent A: 

 

1. If Agent A‟s Interaction Coefficient measure for 

Agent B is below Agent A‟s average Interaction 

Coefficient for other agents, then ignore Agent B and 

select the next listener agent, repeating this test. 

2. Agent A performs its tune TA, adjusting the tune 

based on its own current affective state to give 

performance PA. 

3. Agent B estimates the affective content of Agent 

A‟s performance PA. 

4. If B‟s estimated affective content of PA is close to 

its own current affective state, Agent B concatenates 

PA to the end of its own tune TB. Or to put it another 

way: TB  = TB  + PA. 

5. Agent B adjusts its own affective state towards its 

estimate of the affective content of performance PA. 

6. Agent B updates its Interaction Coefficient measure 

of Agent A proportional to the number of notes 

provided by Agent A in performance PA. 

7. Agent A turns its attention iteratively to the next 

agent, and returns to Step 1. Note: once all agents 

have been considered as candidates for performance 

by Agent A, a new performer agent is iteratively 

selected to perform , say agent B, and to listen, say 

agent C. 

6. MUSIC TRANSFORMS 

Before performing its tune to another agent, an agent 

will transform its tune in a “compositional” way, and 

then transform it using expressive performance 

transformations. The compositional trasnsforms are 

defined as transformations on the agent‟s MIDI tune 

that are not of the size and type found in Computer 

Systems for Expressive Performance (CSEMPS) [5]. 

CSEMPs create patterns in music involve micro-

changes in timing, loudness and pitch. In systems such 

as the Computational Music Emotion Rule System [6] 

which perform both compositional and expressive 

performance transformations, the compositional 

transformations involve larger changes in pitch (i.e. a 

semitone or more) and timing. The compositional 

transformations used in the system in this paper are 

based on two sources: CMERS and Juslin‟s [7] paper 

on musical features and emotional expression. Two 

types of compositional transformations are applied - 

Linear Feature Transforms and a Key Mode 

Transform. The linear transformations - from [6] and 

[7] act on: (a) timing onset and (b) duration are 

inversely proportional to arousal, (c) loudness is 

proportional to valence and arousal, and (d) pitch is 

proportional to valence and arousal (but with valence 

having twice as much influence). These are 

implemented using linear equations described in 

equations (1) to (4).  

 

          
(1) 

          (2) 

              (3) 

              (4) 

When an agent A is about to perform and has a 

particular level of valence (valenceA) and arousal 

(arousalA), it will first compositionally transform its 

stored tune based on the effects of equations (1) to (4). 



  

 

 

The primed values on the left hand side of the 

equations are the defining features of the 

compositionally transformed music, and are used to 

unambiguously generate a transformed MIDI file. The 

pre-transformation values IOIi(A), duri(A), loudi(A), 

and pitchi(A) are: the inter-onset interval between note 

i and the next note i+1, the note duration in seconds, 

the MIDI loudness, and MIDI pitch of the i-th musical 

note of Agent A‟s stored tune. The theta values – (θioi, 

θloud, and θpitch) – define the affective sensitivity of the 

transformation – i.e. how much affect a change in 

Agent A‟s valence or arousal will have on the 

transformation. 

   They are the maximum variation percentage bars 

around the current feature value. For example if theta 

is 0.25, then by Equation (1) the onset will vary from 

25% below its current value to 25% above its current 

value when arousal varies from -1 to 1. If a 

transformation goes above the maximum MIDI value 

(127) then it is set to 127. Similarly if it goes below 1 

it is set to 1. Note θioi is used both for onsets and 

duration so that as gaps between notes are increased or 

decreased, the duration of the same notes is increased 

and decreased by the same amount. 

    For positive emotion a major key is utilized and for 

negative emotion with negative arousal (e.g. 

“sadness”) a minor key is utilized. For negative 

valence and positive arousal (e.g. “Anger” or “Fear”) 

each note is transformed to C minor then moved 

alternately up or down a semitone; this is designed to 

inject an “atonal” element to the music. The transform 

is algorithmic and deterministic – it searches either 

side of the current notes for a note in the new mode 

which does not violate a MIDI boundary (i.e. not out 

of the MIDI 128 parameter range). So suppose an 

agent A has stored a tune from a “happy” agent which 

is a major key. If agent A then performs its tune while 

“sad” it will convert all of its tune, include the major 

part it received from another agent, into the minor 

mode. The current version in this paper has no ability 

for actual key composition functionality, hence the 

reason for using only C major and C minor. 

    The Expressive Performance transformations are 

not detailed in this paper. These are the micro 

transformations which one often hears a human 

making a  fixed score – speeding up and slowing 

down, and getting louder or quieter, without any 

explicit structure in the score. There is not space in 

this paper to detail all elements of the expressive 

performance algorithms used, and their effectiveness 

is not fully tested at this stage. The method used is 

based on Director Musices rules for affective 

expressive performance [8]. Specifically the rules 

Phrase Arch, High Loud, Duration Contrast, 

Punctuation, and Duration Contrast Articulation.  

These are also similar to the rules used in [6] to 

augment the compositional emotional transforms. In 

this paper a similar method is also used to implement 

the combining of the compositional and performative 

elements. The key difference to [6] is that Livingstone 

requires the transformed tunes to first have a structural 

analysis. Whereas the system in this paper utilizes the 

key advantage of applying expressive performance 

during composition: that a structural analysis is no 

longer needed [5]. 

7. TUNE AFFECTIVE ESTIMATION 

A linear equation is used to model the listening agent‟s 

(say agent B) affective estimate of a performance by 

agent A – this is shown in equations (5) and (6).  

 
valenceEstB = xpmean(pitchA) + xlmean(loudA) + 

 xkmean(keyModeA) +  xIOImean(IOIA) + x0      (5) 
 

 arousalEstB = ypmean(pitchA) + 

 ylmean(loudA) + yIOImean(IOIA) + y0             (6) 

 

    In these equations pitchA and loudA refer to the 

average MIDI pitch and MIDI loudness of an agent 

A‟s performance (heard by B). keyIndexA is defined as 

having value 2 for a minor key, and 1 for a major key; 

and the key mode of A‟s tune is estimated using a key 

profile-based algorithm [9]. The x and y coefficients in 

the Equations are constants estimated by linear 

regression.  

    These are estimated in a one-off process as follows. 

A set of 1920 random MIDI files was generated, of 

random lengths between 1 and 128 notes. Each MIDI 

file was transformed for 10 known and equally spaced 

valence and arousal values between -1 and 1 using 

transformation equations (1) to (4), and key mode 

transformations. Then a linear regression was run on 

the resulting transformed MIDI files against the known 

arousal and valence values – based on equations (5) 

and (6). The resulting coefficients were tested and the 

average percentage errors – when tested on a separate 

1920 transformed random files - were 10% for valence 

and 9% for arousal. These are considered to be 

sufficiently accurate given that actual human musical 

emotion recognition error rates can be as high as 23% 

[5].  

    It will be noted that only the compositional, and not 

the expressive performance, transformations are used 

in the regression above. This was because it was 

desired to keep the model flexible for use with and 

without expressive performance, since a composer 

may wish to compose a tune without expressive 

performance. It was found that using the Linear 

Estimator with expressive performance 

transformations overlaid on agent B‟s performance did 

not cause excessive errors in affective estimate by 

agent A.  

    The Linear Estimator is used in two aspects of the 

agents – firstly for an agent to decide whether or not to 

add a performance to its own tune, and secondly for an 

agent to be influenced by the affective content of a 

performance it has heard. Equations (7) and (8) below 

are used to update the valence and arousal of agent B 



  

 

 

after a performance from agent A. The γ (Gamma) 

constant - between 0 and 1 - defines how sensitive an 

agent is to affective state change – i.e. the amount of 

change to valence and arousal. If it is set to 1 then the 

new valence and arousal values will be totally changed 

to the estimated values of the performance the agent 

has just heard. A value of 0 will lead to no change. 

Values between 0 and 1 will cause the estimate to have 

a proportionally greater effect.  

 

  

 

                          (7) 

 

   

                                       (8) 

 

    Once the agent B has decided whether or not to 

append the performance from A (and if so, has done 

so), it will update its valence and arousal based on 

Equations (7) and (8). In future, when it next performs 

a tune, it will transform it based on its new valence 

and arousal state. It is designed so that through this 

series of updating affective states and the agent tune 

communication and system, new musical structures 

will emerge.  

8. INTERACTION COEFFICIENT 

Before an Agent A performs to an Agent B it 

compares its Interaction Coefficient measure of Agent 

B to the average of its Interaction Coefficient for other 

agents: 

IC(A,B) > mean[IC(A, all agents)]          (9) 

 

    If it is not, then it does not perform to Agent B and 

moves on to the next agent. The increase in Interaction 

Coefficient is proportional to the length of tune it has 

added. So the more notes in Agent A‟s performance, 

the greater its Interaction Coefficient will be viewed 

by Agent B. The parameter d is a constant called the 

Interaction Coefficient Update Rate. 

 

IC(B,A) = IC(B,A) + d.N          (10) 

 

    This can be visualised as an Agent‟s basic resources 

being tunes - so the more notes in an Agent‟s tune, the 

greater its potential Interaction Coefficient to other 

agents. However the actual reason for including 

Interaction Coefficient functionality, and making 

Interaction Coefficient proportional to the number of 

notes in a performing agent‟s tune is primarily to 

generate a “social” hierarchy amongst the agents 

which influences the hierarchy of the composed music. 

Bearing in mind that an agent will only perform to 

other agents with a high enough Interaction 

Coefficient, it can be seen that: 

 Agents which perform more than listen will 

tend to have lower interaction coefficients 

 Agents which mostly listen and store will 

have longer tunes and higher interaction 

coefficients 

 Agents with higher interaction coefficients 

will tend to be selected as listeners more 

often 

 

    So the system is designed to turn the agent 

population into a set of agents who tend to perform 

and have shorter tunes, and a set of agents who tend to 

listen and store. The aim is for lower Interaction 

Coefficient agents to be focused on providing lower 

elements of the musical hierarchy. 

9. AN EXAMPLE CYCLE  

An example cycle will now be shown. In this example 

we examine three agents: (a) Agent 1 is the performer 

and starts by considering performing to Agent 2; (b) 

Agent 1’s measure of Agent 2’s Interaction 

Coefficient is very low in this example; (c) Agent 1’s 

measure of Agent 3’s Interaction Coefficient is very 

high; (d) Agent 1’s affective state is high valence and 

high arousal – i.e. “happy”; Agent 3’s affective state 

is low valence and low arousal – i.e. “sad”. 

1. Because Agent 1’s Interaction Coefficient of 

Agent 2 is very low, Agent 1 does not even 

perform to Agent 2. It selects the next Agent 

iteratively – Agent 3. 

2. Agent 1’s view of Agent 3’s Interaction 

Coefficient is very high – so Agent 1 performs its 

tune T1, adjusting it to make it “Happier” 

because of its high valence and arousal state, 

giving a performance P1. 

3. Agent 3 estimates the affective content of Agent 

1’s performance P1 and gets a result of high 

valence and arousal – i.e. it estimates it is a 

“happy” performance. 

4. Because Agent 3’s affective estimate of Agent 

1’s tune is high valence and arousal but Agent 3’s 

state is low valence and arousal – i.e. very 

different to “happy” - Agent 3 discards Agent 1’s 

tune.  

5. However Agent 3 still adjusts it owns affective 

state towards its estimate of the affective content 

of performance P1 i.e. it becomes a little more 

“happy”. 

6. Neither Agent makes any adjustment to their 

Interaction Coefficient measures since no 

performances were stored. 

7. Agent 1 remains the performer, and the next 

agent is iteratively chosen to listen – i.e. Agent 4. 



  

 

 

10. EXAMPLE RESULTS 

(Note: In this system there are a number of parameters 

which need to be set; it is beyond the scope of this 

paper to describe all of them. Those not mentioned 

explicitly here were set to default values.) The best 

way to indicate that this system can produce non-

trivial melodies, in spite of its lack of melodic 

intelligence is to explore the space of what sort of 

pitches can be produced by the system. This is 

partially done in Figures 2 to 4. This is 8 agents run 

for 10 cycles. In each cycle an agent performs to all 

other 7 agents, depending on their interaction 

coefficient. Then in the next cycle the second agent is 

selected to perform, and so on moving through the 

agents. At the start agents were initialized with certain 

affective states and these were allowed to evolve 

through the interaction cycles. Four initializing states 

were used with different levels for [Valence, Arousal] 

pairs. These were: “Happy” = [0.5, 0.5]; “Sad” = [-

0.5, -0.5]; “Angry” = [-0.5, 0.5]; Tender = [0.5; -0.5]. 

    The shown tunes and a number of others were 

played to 10 listeners in tests. It was found that when 

at least 6 out of the 8 agents had the same initial 

valence and arousal, then the listeners had a 71% 

chance of detecting that same valence in the final tune, 

and an 82% chance of detecting that same arousal in 

the tune.  

 

11. HIERARCHICAL STRUCTURE RESULTS 

To display the effects of Interaction Coefficient an 8 

agent system was used with equally spread agent 

initial affective states – i.e. 2 sad, 2 happy, 2 angry, 2 

tender, and run for 32 cycles. The Interaction 

Coefficient update rate was set to 0.2; this is the rate 

at which an agent’s Interaction Coefficient Measure 

of other agents is updated. At the end of the runs the 

number of notes the agents 1 to 8 have is respectively: 

291, 102, 102, 102, 102, 102, 18, and 5. It was found 

that this relates to the Interaction Coefficient – the 

higher an agent’s final Interaction Coefficient the 

higher its note count. Agent 1 ended up with the 

highest, followed by Agents 2 to 6 and agents 7 and 8 

had the lowest. The pattern of interaction can be seen 

from another perspective in Table 2. It can be seen 

that smaller Interaction Coefficient agents tend to give 

out tunes, while the larger Interaction Coefficient 

agents tend to receive tunes. The lower numbered 

agents have higher Interaction Coefficient because of 

the ordering of agent interaction in each cycle. The 

lower agents will be performers first, and have a 

chance to build up their IC. Then when they become 

listeners (receivers) these lower numbered agents will 

receive larger tunes back, and their Interaction 

Coefficient will increase as a result. To see how this 

creates the hierarchical structure, consider that by  

 

Figure 2. 6 Angry, 2 Sad initialized 

Figure 3. 6 Sad, 2 Happy initialized 

Figure 4. 6 Happy, 2 Angry initialized 

 

Table 2 Agent 1‟s final tune could be written as a 

concatenation of subtunes:  

 

1021324354657629310411512613217318 

 

where each number indicates the agent who 

performed, and the subscripts are the cycle numbers 

(an agent‟s tune varies over different cycles – e.g. 318 

is not the same 32.) 

    Because the MAS is a closed system, all tunes in 

this structure are the result of a transformation on 

another agent‟s tune. So for example: 
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Table 2. Pattern of Interaction 

 

21 = 2010‟  

32 = 3010‟‟ 

 … 

 

76 = 7010‟‟‟  

 

    Where the primes („) represent transformations on 

Agent 1‟s tune due to Agent 1‟s affective state at the 

time. In the next round of tunes being given to Agent 1 

this gives: 

29 = 2177‟188‟ =  (2010‟) 77‟188‟ 

 

    This expansion can be continued until there is a full 

description of Agent 1‟s tunes based on the way in 

which the tune grows. This description will show the 

building structure of the tune. (It will not necessarily 

show the perceptual structure of the tune – this is not 

claimed, but it will show how the tune was built from 

the motifs and phrases etc of other agents). This 

structure is clearly a function of the agent interaction 

hierarchy, and as has been seen this hierarchy is 

strongly influenced by the Interaction Coefficient 

functionality. Hence this supports the idea that the 

Interaction Coefficient provides a non-affective-based 

method for generating coherent hierarchical structure 

in the tunes, based on the emerging interaction 

structure in the multi-agent system. 

 

12. CONCLUSIONS 

A multi-agent system has been presented which 

generates melody pitch sequences with a hierarchical 

structure. The system has no explicit melodic 

intelligence and generates the pitches as a result of 

emotional influence and communication between 

agents, and the hierarchical structure is a result of the 

emerging agent social structure. Another key element 

was that the system is not a mapping from multi-agent 

interaction onto musical features, but actually utilizes 

music for the agents to communicate emotions. Each 

agent in the society learns its own growing tune 

during the interaction process. 
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Cycles 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 24 32 

Agent 

1  2 3 4 5 6    2 3 4 5 6    2 3   

2 1      7 8         1     

3 1      7 8         1     

4 1      7 8         1     

5 1      7 8         1     

6 1      7 8         1     

7        8         8   8 8 

8       7        7       


