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The feedback mechanism used in a brain-computer interface (BCI) forms an integral part of the closed-loop learning pro-
cess required for successful operation of a BCI. However, ultimate success of the BCI may be dependent upon the
modality of the feedback used. This study explores the use of music tempo as a feedback mechanism in BCI and com-
pares it to the more commonly used visual feedback mechanism. Three different feedback modalities are compared for a
kinaesthetic motor imagery BCI: visual, auditory via music tempo, and a combined visual and auditory feedback modal-
ity. Visual feedback is provided via the position, on the y-axis, of a moving ball. In the music feedback condition, the
tempo of a piece of continuously generated music is dynamically adjusted via a novel music-generation method. All the
feedback mechanisms allowed users to learn to control the BCI. However, users were not able to maintain as stable con-
trol with the music tempo feedback condition as they could in the visual feedback and combined conditions. Addition-
ally, the combined condition exhibited significantly less inter-user variability, suggesting that multi-modal feedback may
lead to more robust results. Finally, common spatial patterns are used to identify participant-specific spatial filters for
each of the feedback modalities. The mean optimal spatial filter obtained for the music feedback condition is observed
to be more diffuse and weaker than the mean spatial filters obtained for the visual and combined feedback conditions.

Keywords: brain-computer interfaces (BCI); music feedback; visual feedback; music tempo; electroencephalogram
(EEG); motor imagery

1. Introduction

Brain-computer interfaces (BCIs) seek to provide a
mechanism for individuals to communicate and interact
with their environment via brain activity alone, without
activation of the efferent nervous system. Therefore,
BCIs provide a potential method of communication for
individuals with severe movement and/or communication
difficulties (for example, people with spinal cord injury
or amyotrophic lateral sclerosis).[1]

Of all the operation stages of a typical BCI (data
acquisition, pre-processing, feature extraction, classifica-
tion, and application control/feedback [2]), feedback is
arguably the least explored in BCI research.[3] More
often, large efforts are placed in the development of new
processing and classification methods to produce
improvements in performance.[4] However, feedback is
an integral part of the closed-loop control (in which the
output of the BCI system is fed back to the user) that is
a key component of BCI operation.[1]

Indeed, the increasing use of BCI for applications
such as neurorehabilitation,[5] motor learning,[6] and
neurofeedback [6] means that the use of BCI-driven
closed-loop control is increasingly coming into the spot-
light.[4] This includes applications such as stroke reha-
bilitation,[7,8] proposed treatments for emotional

disorders,[9] and proposed treatments for conditions such
as attention deficit hyperactivity disorder.[10] In each of
these applications the feedback mechanism by which
BCI control actions are reported to the user forms an
integral part of the treatment. For example, BCI-based
closed-loop motor control may be used to attempt to
induce changes in neuroplasticity that result in beneficial
motor cortex changes for BCI users who have had a
stroke.[11]

There is strong evidence that the feedback mecha-
nism plays an important role in determining how well a
user can learn to control a BCI. For example, it has been
shown in stroke patients that providing proprioceptive
feedback during motor imagery significantly improves
BCI control performance.[12] Additionally, feedback is
known to strongly affect the BCI learning process.[3]
Despite this only a small number of studies have looked
into how feedback mechanisms affect BCI learning.[4]

Finally, the feedback modality is also known to have
a significant effect on which user groups are able to
make use of a BCI. For example, visual feedback may
only be used by individuals without severe visual
impairment, while tactile feedback requires users to have
functioning afferent nerves, and audio feedback requires
users to not have severe hearing impairments.
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Additionally, some BCIs require further active control
over some functions. For example, some visual feed-
back-based BCIs also require users to maintain control
over their eye gaze direction.[13]

Of the three main feedback modalities that may be
considered for BCI control (visual, haptic, or auditory),
auditory feedback has good potential for user groups
where visual or tactile feedback may not be suitable.
These include individuals with spinal cord injury for
whom a loss of haptic perceptual abilities makes haptic
feedback unsuitable,[14] or people with stroke who may
experience some loss of haptic perception while main-
taining hearing and vision.[15] Additionally, even when
the user has vision and active control over their gaze,
auditory feedback can provide advantages since, in con-
trast to vision-based BCIs, it does not require the user to
be visually engaged in the BCI control and can thus
enable the user to use their eyes for other activities such
as making eye contact with their communication part-
ners.[16]

There are a number of different options available to
auditory BCI users regarding the type of feedback. In
[17] auditory BCI control is achieved via the use of
auditory steady-state potentials (ASSRs). Amplitude-
modulated tones at different frequencies are played into
each ear of the BCI user and, by attending to one of the
tones, the user is able to indicate which option they
would like to select. This type of BCI is able to produce
high control accuracies, but has been reported to be very
annoying for participants.[18]

A different feedback mechanism is presented in [19],
in which recordings of tones at different frequencies are
played to BCI users through different speakers. By
attending to one of the tones the user is able to generate
an event-related potential (ERP) upon hearing the target
tone. Hence, they are able to indicate their preferred
option. Although this type of BCI may be less annoying
than the ASSR BCI, the unnatural nature of the stimuli
may also be somewhat unpleasant to users.

An alternative feedback mechanism that has been
proposed for use in BCI is music-based feedback. This
may be done via playing different music pieces for dif-
ferent control actions or, in the case of analogue BCI
control, modifying some aspect of the music in response
to the user’s attempts to control the BCI.[20]

However, currently there is very little evidence avail-
able to inform us about the efficacy of music as a feed-
back mechanism for BCI control. In some studies, music
has been used as a discrete feedback mechanism but not
investigated as a continuous feedback signal. For exam-
ple, in [22] a user was instructed to select music scores
from a discrete set of options via SSVEP. After selection
of the musical score a musician played the selected piece
and the user began selecting the next score. Although
the music playing was continuous, the timing delay and

variability of this delay introduced by such an approach
make it very difficult to judge the efficacy of this feed-
back mechanism.

In contrast, Nijboer et al. did investigate music for
continuous feedback.[23] They mapped the volume of
two musical instruments, a harp and a bongo, to the syn-
chronization and desynchronization strength of the senso-
rimotor rhythm (SMR). Their results showed that visual
feedback led to significantly higher accuracies than the
music volume-based feedback at the start of training, but
that after three training sessions performance was the
same in both groups. The authors conclude that the
development of auditory BCIs is worthy of further inves-
tigation. In particular, we note that there may be other
parameters that would be more effective for a BCI feed-
back mechanism. We therefore propose that it is worth-
while studying other musical properties that can be
changed continuously by the user.

Additionally, the music used in the study described
in [23] was two very short pre-generated excerpts of
harp music and bongo music. Both these pieces of music
were played to participants multiple times, negating the
well-known effects of surprise and anticipation associ-
ated with music-induced emotion [24] and leading to
over-familiarization of the participants with the music.
Additionally, music volume is known to affect listeners’
perceptions of note duration, time, and arousal [25] and,
therefore, there may be other music features which act as
more effective BCI feedback mechanisms. In particular
we note that perception of different volumes is not uni-
form across different age groups and that differences in
volume can be annoying (too loud) or too difficult to
clearly hear.

Therefore, we attempt to explore the use of music
tempo as the continuous feedback mechanism. Music
tempo is chosen as the modulated signal due to the
immediacy of our perception of tempo changes in music
when compared to other acoustic attributes such as tim-
bre, as well as the relative universality of this musical
property and the wide range of values it can take. Addi-
tionally, tempo may be argued to be more directly musi-
cal than volume changes. The aim of the study presented
here is to characterize how participants can use music
tempo feedback in comparison with the more commonly
used visual feedback mechanism. Participants are asked
to control a BCI via a kinesthetic motor imagery task
under three feedback conditions: visual, auditory via
music tempo, and a combined visual and auditory
modality. We make no a priori hypothesis as to which
feedback modality will allow users to learn to control
the BCI more quickly or to higher levels of accuracy.
Instead, we present each user with a randomly selected
feedback modality and explore how quickly they are able
to learn to control the BCI and to what degree of final
accuracy.
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D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
R

ea
di

ng
],

 [
Ia

n 
D

al
y]

 a
t 0

2:
25

 2
0 

N
ov

em
be

r 
20

14
 



An additional contribution of this work is that we
develop a novel music-generation engine able to produce
piano music on a continuous basis according to defined
parameters. This enables us to continuously change the
music feedback provided by the BCI, meaning that lis-
teners are not subject to a high number of repetitions of
the same music clip, as was the case in [24]. As dis-
cussed in [24], sustained performance with a BCI
requires persistent motivation, and having new music to
listen to over a large number of trials could potentially
influence performance.

2. Methods

2.1. Participants

Eighteen individuals participated in our experiment. Four
of the participants were female. The median age of the
participants was 21 (range 18–26). All participants were
right-handed.

The participants were recruited from the student pop-
ulation of the University of Reading via emails and post-
ers placed around the department. Each person received
£10.00 (GBP) for their participation. Ethical approval for
the experiments was granted as per the University of
Reading ethics guidelines for experimentation. All partic-
ipants provided informed consent before participating in
the study.

2.2. EEG recording

EEG was recorded from 19 channels positioned accord-
ing to the international 10/20 system for electrode place-
ment at FP1, FP2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4,
T4, T5, P3, Pz, P4, T6, O1, and O2. The reference was
placed at FCz and the ground electrode was placed at
AFz.

The EEG was sampled at a rate of 1000 Hz and
recorded from a BrainAmp amplifier (Brain Products,
Germany). All impedances were kept below 5 kΩ.

2.3. BCI paradigms

The BCI was constructed to allow control over each of
the three different feedback modalities via kinesthetic
motor imagery. Each paradigm was tested over nine
runs, the first of which was a calibration run designed to
train the internal parameters of the BCI. Each run was
split into multiple trials, with the calibration run contain-
ing 30 trials and each subsequent run containing 18 tri-
als. The timing of each trial was as follows.

From t ¼ �4s to t ¼ 0s a fixation cross was dis-
played in the center of the screen (note, all times are
reported relative to the beginning of the period when the
user was meant to be controlling the BCI). From t ¼ 0s

through to t ¼ 12s the user was cued to control the BCI
and was able to use kinesthetic motor imagery to per-
form one of two tasks, which depended upon the feed-
back modality. From t ¼ 12s to t ¼ 12:5s, after the end
of the BCI control period, a visual reward was displayed
on the screen in the form of a smiling cartoon face if the
user had managed to achieve the cued task or a sad face
if they had not. An inter-trial interval between the disap-
pearance of the face and the next fixation cross was
imposed with a duration uniformly drawn from the range
1–3 s.

The tasks differed for each of the feedback modali-
ties. The timing of each of the paradigms is illustrated in
(Figure 1).

2.3.1. Visual feedback

For the visual feedback modality a blue ball (visual
angle ≈ 5°) was displayed in the middle of the left edge
of the screen. From this position it moved across the
screen at a constant speed such that it reached the right
hand side of the screen at t ¼ 12s. On the right-hand
side of the screen two targets were displayed in the form
of two vertical bars occupying, respectively, the upper
and lower halves of the screen. One of the bars was indi-
cated to be the target and colored solid green. The other
bar was the non-target and colored with horizontal
stripes of two different shades of red.

The user was instructed to attempt to adjust the posi-
tion of the ball on the vertical axis as it moved across
the screen. The ball could be moved up via kinesthetic
motor imagery of the right hand and moved down via
relaxation (that is, not performing kinesthetic motor
imagery). The task was to attempt to adjust the vertical
position of the ball such that, when it reached the right-
hand side of the screen, it hit the green target bar. The
configuration of this paradigm is illustrated in (Figure 1).

-4 -3 3111 210198765432101-2-

Visual Feedback

Music Feedback

Figure 1. (Color online) BCI paradigm timing. From t ¼ �4s
to t ¼ 0s a fixation cross was displayed. From t ¼ 0s to
t ¼ 12s visual feedback, music feedback, or combined music
and visual feedback was provided as a feedback modality by
the BCI. From t ¼ 12s a visual reward was displayed for 0:5s.
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2.3.2. Music feedback

In the music feedback task music was dynamically gen-
erated at a base tempo of 148 bpm (beats per minute)
and played to the user from the appearance of the fixa-
tion cross at t ¼ �4s until the end of the control period
of the trial at t ¼ 12s. From the disappearance of the fix-
ation cross at t ¼ 0s the user was able to dynamically
change the tempo of the music in the range of 99 bpm
to 288 bpm. The user was cued to either increase or
decrease the tempo of the music via an arrow placed in
the center of the screen (visual angle ≈ 7.5°). Thus, the
aim was for the user to have the music played either fas-
ter or slower at t ¼ 12s than at t� 0s.

Music tempo could be increased via performing kin-
esthetic motor imagery or decreased via relaxing. The
tempo was updated every 100 ms and the music was
generated dynamically via a novel generative algorithm,
as described below. Thus, the music played to the partic-
ipants was novel in every trial.

The generative algorithm allowed the BCI-user to
specify three parameters from which it created sequences
of tone rows (strings of pitch classes with no repeated
notes) and a pool of rhythm data. In our system the gen-
erated row was used to supply the selection of notes
from which the musical sequences were derived.

Our system used six pitch values arranged in a tone
row to create musical sequences, by combining notes
from the tone row with rhythms. Rhythms were gener-
ated by sequencing selections from a series of duration
values (with up to eight quavers in a sequence). Varia-
tions in the duration values were introduced according to
the starting parameters. To create a finished musical
sequence, duration values were selected aleatorically and
assigned to pitches from the tone row, creating a large
variation of possible musical sequences from a small
amount of seed data (a tone row and a series of duration
values). The starting note of the sequence was selected
randomly for each participant. This allowed the system
to create continuously varying musical stimuli without
excessive repetition or reliance on existing musical stim-
uli which might risk complications on the basis of exist-
ing listener familiarity.

2.3.3. Combined feedback

A combined feedback paradigm was also explored using
both visual and music tempo feedback to allow control
of the BCI. In this paradigm both the music feedback
and the visual feedback were presented to the user simul-
taneously; i.e. the user was able to control the position
of the ball on the vertical axis and the tempo of the
music. Increasing the tempo of the music and the height
of the ball was performed via kinesthetic motor imagery
of the right hand, while decreasing the height of the ball

and the tempo of the music was performed via relaxa-
tion. Both the red/green target bars and the up/down
arrows were used in this paradigm to convey the target
to the user.

2.3.4. User groupings

The 18 users were randomly allocated into three different
groups, one for each of the BCI paradigms. Six users
were allocated the visual feedback paradigm, seven were
allocated the music feedback paradigm, and five were
allocated the combined-modality feedback paradigm.

For each paradigm users were provided with written
instructions on how to operate the BCI. These took the
form of an explanatory document detailing the objectives
of the experiment, a more general slideshow describing
an overview of each of the BCIs, and a detailed power-
point presentation describing the specifics of the BCI
type they had been randomly assigned. Users were asked
to read through each set of instructions at their own
speed and given an opportunity to ask questions.

2.4. BCI control

The BCI was controlled via kinesthetic motor imagery or
relaxation. To obtain a measure of kinesthetic motor
imagery strength the event-related desynchronization
(ERD) was used. ERD was measured via the alpha band
power strength (8–13 Hz) of the EEG recorded over the
left motor cortex (contralateral to the right hand, which
was used for motor imagery). Thus, the mean EEG band
power in the range 8–13 Hz recorded on channels F3,
T3, C3, Cz, and P3 was inverted, scaled by a constant
scaling term k, and mapped to the height of the ball in
the visual and combined tasks and the tempo of the
music in the music and combined tasks. Therefore, per-
forming kinesthetic motor imagery of the right hand cre-
ated an ERD, decreasing alpha band power, and relaxing
increased alpha band power.

Inter-user differences mean that it is necessary to
train the BCI to respond accurately to each user’s control
attempts. This was performed via a staircase training
algorithm in the calibration run (the first run of the para-
digm).

Therefore, the scaling term k was trained as follows.
The calibration run was split into pairs of trials. Each
pair of trials contained one trial with a cue to increase
the music tempo and/or move the ball up (depending on
the feedback modality), which was denoted the ‘up-trial’,
and one trial with a cue to decrease the music tempo
and/or move the ball down, denoted the ‘down-trial’.

After each pair of trials the results were evaluated. If,
for both trials, the user had increased the music tempo
and/or moved the ball up the value of k was increased
by an adjustment term a; k ¼ k þ a. If, for both trials,
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the user had decreased the music tempo and/or moved
the ball down the value of k was decreased; k ¼ k � a.
If the user was able to increase the tempo and/or move
the ball up for one trial and decrease the tempo and/or
move the ball down for the other trial in the pair k was
not adjusted and instead a was halved; a ¼ a

2. The scal-
ing terms k and a were both restricted to positive values.

2.5. Artifact removal

The EEG was visually inspected for artifacts via an
experimenter who was blinded to the contents of each of
the trials, the BCI paradigm, and the results achieved by
the users. Portions of the EEG containing blinks, electro-
myographic artifacts, movement, failing electrodes, elec-
trocardiographic artifacts, and/or eye movements were
marked on the contaminated channels and time points.

Trials were rejected from the dataset and not
included in subsequent analysis steps if they were
observed to contain artifacts on the channels used for
control of the BCI (F3, T3, C3, Cz, and P3) during the
BCI control period (t ¼ 0� 12s).

2.6. Analysis

User performance at each of the BCI paradigms was ana-
lyzed in terms of accuracy and learning rates. Addition-
ally, the strength of the ERD generated by each of the
users during each of the attempts to increase the music
tempo and/or move the ball up was measured and used
as a criterion to assess the ability of users to learn to
control each BCI feedback modality.

2.6.1 Performance

Performance was measured in terms of control accuracy
of the BCI using each of the three feedback modality
paradigms. Additionally, performance was also measured
via learning rates, the rate at which users were able to
learn to control each of the BCI paradigms.

Accuracy was measured via the balanced accuracy
measure (the sum of the sensitivity and specificity of the
classification result, divided by two). This provides a
measure of accuracy which is not biased by differences
in numbers of trials in each class.[26] This was neces-
sary because the artifact-removal stage may have resulted
in the removal of more trials recorded during one cued
task (e.g. increase music tempo and/or move the ball up)
than the other cued task.

Learning rate was measured as the steepness of the
curve of accuracies over runs between the first run after
the calibration run (run 1) and the run in which the peak
accuracy was observed. Learning curve steepness was
measured as the change in accuracy over the number of
runs taken to reach the peak accuracy. Additionally, the

number of runs required before peak accuracy was
reached was also used as a measure of BCI learning rate.

Additionally, performance was measured over time
by looking at the variance of the BCI control action
(either the height of the ball or the tempo of the music)
over the length of the trial. For example, it may be the
case that users are able to accurately control the BCI for
the first few seconds of the trial, but are unable to
strongly maintain the necessary ERD strength for the
entire 12 s trial and, therefore, exhibit greater variance
towards the end of the trial. Therefore, BCI control
action variance was explored over the length of the trial
in a 1 s window slid by 0.5 s across the trial.

Finally, it has been reported elsewhere that there is a
relationship between the variance of musical tempo and
ERD strength in participants passively listening to
music.[27] Therefore, to determine whether this effect
produces any change in our BCI control accuracy we
will look for correlations between music tempo variance
(as controlled by the BCI) and the final outcome of the
BCI control. For example, if there is a positive correla-
tion between music tempo variance during the trial and
the users more frequently increasing the final tempo of
the music at the end of the trial this could indicate an
interference effect between music tempo variance and
the ERD strength.

2.6.2. Neurological activity

Neural correlates of kinesthetic motor imagery may be
used to provide some measure of the user’s success in
attempting the correct mental strategy to control the BCI.
Thus, the strength of the ERD was used as a measure of
the strength of each user’s mental imagery. Differences
in ERD strength between different paradigms may indi-
cate differences in a user’s ability to utilize each feed-
back modality in the control of a closed-loop BCI.

ERD strength was measured as the mean relative
band power strength in the alpha frequency band (8–13
Hz) over channels F3, T3, C3, Cz, and P3 from t ¼ 0s
through to t ¼ 12s. This mean band power was mea-
sured relative to the baseline period (the period in which
the fixation cross is on screen but the user is not yet able
to control the BCI; t ¼ �4s through to t ¼ 0s).

Additionally, common spatial patterns (CSP) were
used to attempt to identify optimal spatial filters for each
participant that differentiate the ERD and non-ERD con-
ditions. This was used to determine whether there is any
difference in the spatial topography of ERD maps
between the different feedback modalities. This analysis
was performed offline. The spatial maps were also used
to compare the differences in neurophysiological pro-
cesses involved in operating a BCI with visual feedback
compared to operating a BCI with music tempo
feedback.

Brain-Computer Interfaces 5

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
R

ea
di

ng
],

 [
Ia

n 
D

al
y]

 a
t 0

2:
25

 2
0 

N
ov

em
be

r 
20

14
 



Finally, the CSP filters were trained and used in con-
junction with a linear discriminant analysis (LDA) classi-
fier to attempt to classify the EEG offline during each
feedback modality. This was done in order to investigate
the effect of using optimal spatial filters on classification
accuracy. To do this a 10×10 cross-fold train and valida-
tion scheme was used to train and test the CSP filters
and LDA classifier.

3. Results

Participants were able to control the BCI at statistically
significant rates of accuracy when using the tempo feed-
back. However, performance was significantly worse
when compared with the other two conditions.

Users were randomly allocated a feedback paradigm.
The number of users in each group is listed in Table 1.
Note that the balance of males to females is approxi-
mately similar across feedback modalities.

A mean of 18.55 (±21.74) artifacts were removed
from the EEG dataset recorded from each participant.
This left a mean of 125.44 (±21.74) trials for use in the
analysis.

3.1. Performance

Users were observed to control each of the BCI para-
digms with statistically significant levels of accuracy
(p\0:05). Table 2 shows the accuracies achieved by
each user for each session for the visual feedback para-
digm.

Table 3 shows the accuracies achieved by each of the
users when using the combined visual feedback and
music feedback paradigm. Note that significant accura-
cies (p\0:05) were achieved in one or more runs for all
users with this BCI feedback mechanism.

Finally, Table 4 shows the balanced accuracies
achieved by each of the users who used the music tempo
feedback modality for BCI control. While significant
accuracies (p\0:05) were achieved in some runs by six
out of the seven users, the accuracies were considerably
lower than those achieved in either the visual feedback
or the combined visual and music tempo feedback condi-
tions. Additionally, one user (user 17) withdrew from the
study after six runs.

Accuracies over sessions for each of the feedback
conditions are illustrated in Figure 2. For each condition
there was an increase in balanced accuracy over sessions
as the users learned to control each of the feedback para-
digms. There was also a decrease in accuracy after a
peak point. This is discussed further below.

Accuracies were compared between groups via a 1×3
ANOVA with factor ‘paradigm’ (including ‘Visual’,
‘Combined’, and ‘Music’). A significant effect of ‘para-
digm’ was found (Fð2; 138Þ ¼ 3:75; p ¼ 0:026). Post-
hoc testing was performed via t-tests and a significantly
lower accuracy was found for the music vs. visual feed-
back and music vs. combined feedback conditions
(p\0:01). No significant difference was found between
the visual and combined feedback conditions.

Learning rates (as measured both by the accuracy
curve steepness and by the number of runs taken to
reach the peak accuracy) were compared between the
different paradigms via a 1×3 ANOVA with factor ‘para-
digm’ (‘Visual’, ‘Combined’, and ‘Music’). No signifi-
cant differences were observed between any of the
paradigms in terms of learning rate (p ¼ 0:891). Thus,
although BCI users were able to control the visual and
combined feedback paradigms more accurately, they did
not learn how to do so more quickly.

It is also interesting to note that there is a visually
apparent difference in IQR between the different
conditions, with the combined modality condition appar-
ently exhibiting lower IQR than the other modalities.
This is statistically verified by a 1×3 ANOVA with
factor ‘Feedback’ and levels ‘Visual only’, ‘Combined’,
and ‘Music only’. A significant effect is found,
(Fð2; 23Þ ¼ 4:75; p ¼ 0:0199). Post-hoc pair-wise t-tests
between each pair of groups reveal the combined condi-
tion to have the lowest IQR and that it is significantly
lower than the music-only IQR (p ¼ 0:012). This is illus-
trated in Figure 3.

We also look at the variance of the BCI control
action over the course of the trial. Linear regression is
used to determine whether there is a significant trend in
the observed variance of the BCI control action over
time for each of the feedback modalities. For the visual
feedback and combined feedback modalities no trend is
found (p ¼ 0:274 and p ¼ 0:168 respectively). However,
for the music feedback modality a significant trend of
increasing variance in the BCI control action is found
over the length of the trial ðR2 ¼ 0:054; p ¼ 0:015).
Therefore, in the music feedback modality the BCI con-
trol becomes less stable over time.

Finally, to explore whether there is any relationship
between this tempo variance and the final control action
taken by the BCI (either increase/ decrease the tempo
over baseline or move the ball up or down), we explore
correlations between the variance of the BCI control
action (the tempo in the case of the music feedback and

Table 1. Number of participants in each group and male/
female split.

Males Females

Visual feedback 4 1
Combined feedback 4 2
Music feedback 6 1

6 I. Daly et al.
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combined modalities) and the final control action. We
find a significant correlation between tempo variance and
the final BCI control outcome in the music feedback
modality (r = 0.078, p = 0.024), indicating that as the
variance in the tempo increases the user is more likely to
increase the final tempo over its baseline value.

3.2. Neurological activity

Neurological activity was compared between the differ-
ent feedback paradigms to determine whether there was

a significant difference between paradigms in terms of
neural correlates of motor imagery (the action performed
by the users to attempt to control the BCI). The event-
related desynchronization (ERD) was used as a neural
correlate of motor imagery.

ERD strength was measured in the alpha (8–13 Hz)
frequency band for each trial included in the analysis
(that is, trials without artifacts). A 1×3 ANOVA was per-
formed with factor ‘paradigm’ (‘Visual’, ‘Combined’, and
‘Music’) and a significant effect of ‘paradigm’ was found
(Fð2; 339Þ ¼ 5:75; p ¼ 0:0035). Post-hoc t-tests revealed

Table 2. Balanced accuracies achieved by users of the visual feedback BCI paradigm, median accuracies over all users per session
and inter-quartile range (IQR). Significant accuracies (p\0:05) are indicated in bold.

User Paradigm

Runs (18 trials per run)

1 2 3 4 5 6 7 8

1 Visual 0.51 0.62 0.50 0.48 0.44 0.44 0.59 0.38
2 Visual 0.50 0.50 0.47 0.49 0.75 0.49 0.75 0.56
3 Visual 0.57 0.66 0.36 0.71 0.57 0.49 0.67 -
4 Visual 0.65 0.72 0.87 0.90 0.88 0.78 0.72 0.81
5 Visual 0.59 0.51 0.79 0.89 0.87 0.59 0.48 0.57
6 Visual 0.83 0.83 0.94 0.83 1.00 1.00 0.87 0.82
Median 0.58 0.64 0.64 0.77 0.81 0.54 0.69 0.57
IQR 0.14 0.21 0.40 0.40 0.31 0.29 0.16 0.25

Table 3. Balanced accuracies achieved by users of the combined visual and music tempo feedback paradigm for BCI control, med-
ian accuracies, and inter-quartile range (IQR). Significant accuracies (p\0:05) are indicated in bold.

User Paradigm

Runs (18 trials per run)

1 2 3 4 5 6 7 8

7 Combined 0.44 0.50 0.75 0.78 0.61 0.67 0.69 0.78
8 Combined 0.50 0.35 0.54 0.81 0.66 0.57 0.56 0.48
9 Combined 0.61 0.54 0.56 0.55 0.36 0.76 0.58 0.67
10 Combined 0.74 0.83 0.88 0.87 0.60 0.79 0.78 0.75
11 Combined 0.85 0.72 0.81 0.94 0.82 0.90 0.76 0.69
Median 0.61 0.54 0.75 0.81 0.61 0.76 0.69 0.69
IQR 0.24 0.22 0.25 0.09 0.06 0.12 0.18 0.08

Table 4. Balanced accuracies achieved by users of the musical tempo feedback modality for BCI control, median accuracies, and
inter-quartile range (IQR). Significant accuracies (p\0:05) are indicated in bold.

User Paradigm

Runs (18 trials per run)

1 2 3 4 5 6 7 8

12 Music 0.44 0.45 0.44 0.50 0.56 0.50 0.55 0.50
13 Music 0.36 0.53 0.52 0.30 0.55 0.34 0.73 0.57
14 Music 0.71 0.76 0.75 0.69 0.62 0.56 0.50 0.37
15 Music 0.80 0.80 0.87 0.80 0.89 0.69 0.70 0.89
16 Music 0.50 0.50 0.50 0.51 0.67 0.72 0.56 0.59
17 Music 0.92 0.81 0.72 0.63 0.61 0.69 - -
18 Music 0.30 0.30 0.31 0.62 0.83 0.75 0.42 0.33
Median 0.50 0.53 0.52 0.63 0.63 0.69 0.55 0.54
IQR 0.44 0.35 0.31 0.19 0.27 0.22 0.20 0.22
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a significantly lower ERD strength in the music paradigm
than the other two paradigms (p\0:01) and no signifi-
cant difference in ERD strength between the visual and
the combined paradigms. This is illustrated in Figure 4.

Common spatial pattern filters are calculated offline
for each of the three feedback conditions within a 10×10
cross-fold train and validation scheme. The mean spatial
filters across sessions and participants in each group are
illustrated in Figure 5. It is interesting to note that for
both the visual and combined feedback modalities CSP
identifies a spatial filter centered over the left motor area
with a strong, and almost equal, weighting on channels
C3 and P3, while for the music feedback condition the
CSP filter is more diffuse.

CSP was also used to filter the data prior to classifi-
cation via a linear discriminant analysis (LDA) classifier
in a 10×10 cross-fold train and validation scheme. The
mean and standard deviation of the classification accura-
cies across participants for each condition are reported in
Table 5.

Pairwise t-tests were used to compare the accuracies
between different feedback conditions. No significant dif-
ference in accuracy was found between the visual feed-
back and the combined feedback condition (p ¼ 0:871).
However, significant differences were found between the
visual feedback and music feedback conditions
(p ¼ 0:042), and between the combined feedback and
music feedback conditions (p ¼ 0:049).

4. Discussion

Our study aimed to explore the use of music tempo as a
feedback mechanism for BCI control and compare it to
the more commonly used visual feedback mechanism
and a combined visual and musical feedback mechanism.
We used a novel music-generation system to do this.

The results indicate that each of the feedback para-
digms, including music-tempo-based feedback, can be
integrated into closed-loop BCI control. Users of a BCI
using each of the feedback mechanisms can learn to
manipulate the feedback provided and the majority of
users can control each of the BCIs at statistically signifi-
cant rates of accuracy (p\0:05).

However, the accuracy at which users can control a
BCI via the music-tempo-based feedback mechanism is
significantly lower than that observed for the visual and
combined visual-music feedback mechanisms. This sug-
gests that users are not able to utilize music-tempo-based

Figure 2. (Color online) Median accuracies over sessions for
each of the BCI feedback conditions. The lines represent med-
ian accuracy and the shaded areas �2� Var, where Var
denotes the variance of the balanced accuracies over users.

Visual only Combined Music only
0

0.05
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0.15
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Figure 3. (Color online) Mean and standard deviation of IQR
values across participants and sessions for each of the feedback
modalities.

Visual Combined Music
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Figure 4. (Color online) Mean across all trials of ERD
strength (measured as absolute difference in band-power from
baseline) recorded on a single trial basis from each feedback
paradigm. The bars indicate ±1 standard deviation.
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feedback as well as visual feedback in the control of a
BCI.

Within BCI research the threshold of 70% accuracy
is widely cited as the level of accuracy required to
achieve useful communication.[28] Both the visual feed-
back and the combined feedback modalities allow users
to achieve accuracies above this threshold; music tempo
feedback does not. However, this threshold is based
upon work with only two individuals with amyotrophic
lateral sclerosis [29] and is only intended to serve as an
approximate rule-of-thumb test to indicate a BCI is ready
for use for communication purposes. We suggest that
any BCI control accuracy that is statistically significant
indicates that it is worth further investigation.

The number of participants in each group differs.
This is due to a small number of participants not turning
up to their assigned time slot without warning near the

end of the study. Nonetheless, the statistical tests used to
compare the groups are robust to imbalanced group sizes
and, therefore, our results remain valid.

These results reinforce the understanding that, when
developing new BCI applications, it is important to con-
sider the feedback modalities that will be used. The
music-tempo-based feedback represents a novel type of
feedback mechanism. Specifically, the use of music as a
feedback mechanism classifies this type of BCI as a
brain-computer music interface (BCMI).[22] Currently,
only a few types of BCMI have been developed. The
majority have allowed control over music via selection
from a discrete set of options. For example, in [22] dis-
crete sets of musical scores are available to users who
may select the score they wish to use via focusing on a
steady-state visual evoked potential (SSVEP), while in
[23] short music clips are repeatedly played at BCI-
controlled volumes to BCI users. Thus, the analogue
control of tempo in continuously generated, non-repeat-
ing, music via a BCI user represents a unique advance in
the field of BCMI and has some potentially interesting
applications in areas such as entertainment and music
therapy.

Specifically, allowing users of a BCI to interact with
some properties of music, such as tempo, provides a
means of creative output. Such creative output has been
demonstrated to be very important for some BCI user
groups, such as individuals with amyotrophic lateral

Figure 5. (Color online) Mean common spatial pattern (CSP) filters for the three feedback conditions, (A) visual feedback,
(B) combined feedback, and (C) music tempo feedback.

Table 5. Mean and standard deviation (Std.) of accuracies
achieved by LDA classification of the CSP-filtered EEG
recorded during each feedback paradigm.

Condition

Accuracy

Mean Std.

Visual feedback 0.687 0.128
Combined feedback 0.699 0.065
Music feedback 0.639 0.077
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sclerosis (ALS), who would otherwise have difficulty
creatively expressing themselves. For example, in [21] a
BCI application is provided to allow individuals with
ALS to paint and is demonstrated to allow them to be
productive, creative, and interact with society in new and
beneficial ways.

Music-based feedback also has an advantage over
other auditory feedback mechanisms by providing a
mechanism which may be considerably less annoying to
users than either ASSRs or human voice feedback (as
used in [19]). Additionally, the ability of music to induce
different affective states in the BCI user opens up inter-
esting possibilities in the use of BCI for treating patients
suffering from depression (for example), via dynamic
modulation of properties of the music known to induce
particular emotional responses.[21]

Additionally, the ability of music to induce different
affective states opens up interesting possibilities in the
use of BCI for treating emotional problems such as
depression via dynamic modulation of properties of the
music known to induce particular emotional
responses.[30] Finally, music-based feedback in BCI
may also open up possibility for the use of BCI in main-
stream user groups. For example, BCI use for entertain-
ment is a significant possibility for a music feedback
mechanism.[31]

However, visual feedback is observed to be signifi-
cantly easier to control than music-tempo-based feed-
back. Nonetheless, visual feedback is not suitable for all
users and it is important to consider the context in which
the BCI will be used. For example, visually impaired
users would be unable to use this type of feedback
mechanism and, for this user group, it is important to
develop BCIs that are able to make effective use of alter-
native feedback mechanisms.[13]

Lower ERD strengths were observed during the
music-tempo feedback paradigm. This reinforces results
reported elsewhere (see, for example, [3]) that the feed-
back mechanism is important in the correct production
of ERD activations. There are a number of possibilities
that may explain why music feedback does not result in
ERD activations as large as observed in the visual and
combined feedback conditions. It is possible that the
users are distracted by the tempo of the music in a way
that they are not by the visual stimuli. For example,
high-tempo music has been reported elsewhere to corre-
late with inducing feelings of excitement in the lis-
tener.[32] Thus, when the tempo was increased the BCI
user may have become less focused on the motor imag-
ery task. However, we may consider this to be unlikely
as no such effect was observed during the combined
feedback paradigm, when the music would also poten-
tially be distracting the users.

The common spatial patterns (CSP) algorithm was
used to identify optimal spatial filters for separating the

EEG via control conditions for each of the feedback
modalities. The resulting CSP filters reveal both visual
feedback and combined feedback modalities to have a
corresponding filter concentrated over the left motor cor-
tex, while the spatial filter for the music feedback para-
digm is more diffuse and distributed over a wider area.
This reinforces the view that the participants were not
able to produce clear well-defined ERDs during music
feedback.

Alternatively, it is possible that the music was induc-
ing brain activation patterns which were interfering with
the users’ attempt to control the tempo of the music via
motor imagery. It was reported in [27] that changes in
the tempo of music clips taken from film scores induced
changes in ERD activation strengths in listeners’ motor
cortices while listeners sat passively and did not attempt
any movement or motor imagery. Specifically, the vari-
ance in tempo of music over time was observed to sig-
nificantly correlate with ERD strength in the left motor
cortex in right-handed participants. The greater the vari-
ance in tempo observed over a 12 s long musical clip,
the greater the ERD strength. Thus, changes in tempo of
our music-based feedback mechanism could be interfer-
ing with ERD responses related to our users’ attempts to
control the BCI.

For example, if the user of our BCI with music
tempo feedback is able to initially relax and reduce their
ERD strength at the start of the trial this will reduce the
tempo of the music. However, if they then momentarily
disengage from the task and the tempo increases again
this variation in tempo may result in an ERD, which in
turn will further increase the tempo of the music. This is
confirmed by inspecting the correlation between tempo
variance over the trial and the final outcome of the BCI
control (either an increase or a decrease in the tempo).
When looking at the first half of the trial (0–6 s) there is
a significant correlation between tempo variance and
final outcome (r = 0.078, p = 0.024), indicating that as
the variance in the tempo increases the user is more
likely to increase the final tempo over its initial baseline.
This effect is not seen in the visual condition (r = 0.026,
p = 0.466) or the combined condition (r = 0.035,
p = 0.357).

The accuracy of the BCI control over time improves
until runs 5 or 6, at which point it begins to decline.
This may be caused by fatigue in the users, as all the
runs were performed sequentially on the same day in a 1
hour session, which can be tiring. It is also interesting to
note that the combined feedback condition exhibits lower
IQR than the other two conditions. Thus, when multi-
modal feedback is provided cross-participant perfor-
mance variance is reduced. There may be a number of
reasons for this: for example, the provision of multi-
modal feedback may allow users of the BCI to more
accurately judge their current performance than a single
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feedback modality alone. This suggests that more consis-
tent BCI performance could, potentially, be achieved
with a multi-modal feedback mechanism.

An additional consideration is the short-term memory
requirements of the musical feedback modality. Through-
out the visual feedback modality the users were able to
judge where the central line on the vertical axis was and
how the current position of the ball related to this line.
In the music feedback condition it was not possible to
simultaneously present music at the baseline and at the
adjusted tempo. Therefore, the user had to rely on their
memory of the baseline tempo to judge whether the cur-
rent tempo of the music was greater or less than this.
Thus, the additional short-term memory requirements of
this feedback modality may place additional restrictions
on the users’ ability to control it effectively.

These results have a number of interesting implica-
tions for BCI research. This is one of the first explorations
of the efficacy of the tempo of continuously generated
novel music as a feedback mechanism and suggests that,
although the performance is low, it could be useful for
some user groups in future. However, the significantly
lower performance observed for users of the music tempo
feedback task compared to the visual task suggests that,
where suitable, visual feedback or combined-modality
feedback should be used when the aim is the development
of a fast and accurate communication device.

For BCMI development it is important to pair the
feedback mechanism with the correct cognitive task
which is to be used as a control strategy. For example,
strategies should be complementary to each other and
non-interfering. Thus, music tempo may not be best sui-
ted to BCI control via motor imagery, but may be better
suited to control via other cognitive strategies. For exam-
ple, the use of affective state imagery, as proposed in
[30], may be useful for control of BCMIs.

Additionally, the ability of music to induce particular
affective states suggests it may be suitable for use in a
BCI intended to modulate and/or regulate users’ emo-
tions. For example, neural correlates of music-induced
emotion may be detected (for example, see [33]) and
used to adjust some properties of dynamically generated
music.
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