
Enhancing Sound Design with Conceptual

Blending of Sound Descriptors

João M. Martins1, Francisco C. Pereira1, Eduardo Reck Miranda2, and
Amı́lcar Cardoso1

1 AILab, Centro de Informática e Sistemas da Universidade de Coimbra (CISUC)
3030 Coimbra, Portugal

{jpmm, camara, amilcar}@dei.uc.pt
http://ailab.dei.uc.pt

2 Computer Music Research
University of Plymouth

Plymouth, UK
eduardo.miranda@plymouth.ac.uk

http://neuromusic.soc.plymouth.ac.uk/ccmr.html

Abstract. This paper introduces a new method for sound synthesis
using concept description of sounds. Sound descriptions are blended to
form a new description, which inherits properties from the former entities
as well as having an emergent structure of its own. Such blends are then
synthesised to become a potentially new sound.
This work applies the system Divago, which is based on a general purpose
computational model of Conceptual Blending.

1 Introduction

Computer sound synthesis has become very attractive for a wide range of mu-
sicians. Computers are highly programmable and personal computers can run
software capable of synthesising sounds in real-time using a wide range of differ-
ent techniques. Musicians often may not wish to use preset timbres but would
rather prefer to create their own instruments. There are, however, a number
of ways to implement synthesisers on a computer, and the choice of a suitable
synthesis technique is crucial for effective results. Synthesis techniques may be
classified into four categories: loose modelling, spectrum modelling, source mod-
elling and time-based approaches.

Loose modelling techniques tend to provide synthesis parameters that bear
little relation to the acoustic world. They are usually based entirely upon con-
ceptual mathematical formulae. It is often difficult to predict the outcome and to
explore the potential of a loose model. Frequency modulation (FM) is a typical
example of loose modelling [1]. FM is a powerful technique and relatively easy
to implement, but difficult to operate because the relationship between a timbre
and its respective synthesis parameters is not intuitive; for example, increasing
the value of a parameter may not necessarily increase the manifestation of its
associated sound qualities.



2 J. M. Martins et al.

Source modelling and spectrum modelling attempt to alleviate this problem
by providing less obscure synthesis parameters; both support the incorporation
of natural acoustic phenomena. The fundamental difference between source and
spectrum modelling techniques is that the former tends to model a sound at its
source, whilst the latter tends to model a sound at the basilar membrane of the
human ear. The implementation of a source model (e.g., a physical model) is
not straightforward. But once the model is implemented, the user is confronted
with relatively intuitive parameters to operate it.

Spectrum modelling techniques have their origins in Fourier’s Theorem and
the additive synthesis technique. Fourier’s Theorem states that any periodic
waveform can be modelled as a sum of partials at various amplitude envelopes
and time-varying frequencies. Additive synthesis is accepted as being perhaps the
most powerful and flexible spectrum modelling method [2]. Musical timbres are
composed of dozens of time-varying partials, including harmonic, non-harmonic
and noise components. It would require dozens of oscillators, noise generators
and envelopes to simulate musical timbres using the classic additive technique.
The specification and control of the parameter values for these components are
difficult and time-consuming.

Finally, time-based techniques approach synthesis from a time domain per-
spective. The parameters of time-based synthesis tend to describe sound evo-
lution and transformation of time-related features; e.g. in terms of time lapses.
Examples of time modelling techniques include granular synthesis [3] and se-
quential waveform composition [4]. But again, musicians tend to not use such
techniques because it is difficult to determine the role of their parameters with
respect to sound quality.

It is clear that some techniques are more intuitive to operate than others, but
the most intuitive ones may not be the most appropriate for producing particular
types of sounds. From the point of view of the user, however, the problem with
sound synthesis is not so much with the intuition of the parameters of the various
techniques, but with having the right tools to aid the creative design process.

Sound design is certainly a complex kind of intelligent behaviour. In attempt-
ing to solve a sound design problem, composers need to explore possible solutions
by trying out possibilities and investigating their consequences. When synthe-
sising sounds to be used in a composition, composers generally have their own
ideas about the possibilities of organizing these sounds into a musical structure.
In attempting to obtain the desired sound, the composer needs to explore a vari-
ety of possible solutions, trying out those possibilities within his or her personal
aesthetic. It is the need to provide better support for this exploratory creative
process that has motivated our research work.

Sound synthesis systems normally provide good graphic facilities to design
the instruments; e.g. visual programming tools such as Max/MSP [5] and Reak-
tor [6]. However, such systems do not give support for the exploration of the
potential of such instruments. The user is often confronted with a visual inter-
face for setting the various synthesis parameters manually. In these cases, the
sound design process normally involves non-systematic and lengthy trial and er-



Sound Blending 3

ror practices. We believe that we can improve this scenario by providing Artificial
Intelligence (AI) to sound design systems. One approach for doing so is to pro-
vide tools for the exploration of synthesis algorithms using high-level conceptual
descriptions of sounds, as opposed to low-level parametric specifications.

Early attempts at high-level AI systems for sound design have been proposed
by Rolland and Pachet [7], and also by Miranda [8], in his system called ARTIST
(ARTificial Intelligence Sound Tool). ARTIST was intended to offer the ability
to operate the system in terms of qualitative sound descriptors (e.g., adjectives in
English) and intuitive operations rather than in terms of numerical values. The
system featured a symbolic representation scheme devised to represent sounds
in terms of their perceptual components and relations between them.

Other less AI-oriented attempts at the design of high-level interfaces for
synthesisers include [9] [10] [11].

A thorough discussion on the pros and cons of these systems is beyond the
scope of this paper. It suffices to say that the main limitation of the system
developed by [7] is that it has been designed primarily as an interface for a
commercial MIDI keyboard synthesiser manufactured in the mid of the 1990s.
As for ARTIST, the robustness of the the knowledge base and inference engine
has not been tested on cases combining different synthesis methods. Also, the
system does not provide a straightforward solution for dealing with conflicting
sound descriptors. Unfortunately neither of these systems have been further
developed by the authors.

The present paper proposes a further development of the approach introduced
in ARTIST, by taking on board a new computational model for conceptual
blending, called Divago. We believe that the concept of conceptual blending
is more flexible for representing and manipulating sound attributes than the
frame-like representation used in ARTIST.

2 Overview of Divago

Divago is a system that is able to combine (i.e. blend) a pair of concepts into a
single concept which has a structure of its own. In other words, a blend inherits
characteristics from the original concepts, but may contain novel characteristics
obtained from the process or from a third source (e.g. a rule base, an ontology, a
frame). Thus it should have emergent structure. Divago is a rather large project
therefore we will give a general overview of the aspects that are relevant for this
paper, leaving out some of its foundations and specificities; readers can find this
information elsewhere [12, 13].

2.1 Knowledge Representation

Divago allows several different kinds of knowledge representation (the sound
synthesis jargon will be clarified in section 3):

– Concept maps describe factual knowledge about a concept. A concept map
is essentially a semantic network in which all arcs are binary (i.e. they connect



4 J. M. Martins et al.

Low
Sound

1
Bright

Long

Pitch Timbre

D
uration

High
Sound

2
Dark

Short

Pitch Timbre

D
uration

Fig. 1. Concept maps for two sound examples

exactly two different elements1). For example, the fact pitch(sound 1, low) is
a characteristic of sound 1 and part of its concept map (see the arc between
sound 1 and low in Fig. 1). In Fig. 3 two concept maps of a flute sound and
guitar sound are presented as sources for the blend.

– Rules describe inferential knowledge about a concept or a domain. Rules
are represented in first order logic format2. A possible rule could be “If X is a
stringed instrument AND it is not a Piano THEN its partials are harmonic.”.

– Frames describe abstract concepts or procedures. They can be instantiated
by the concept maps (when this happens one says that “the frame has been
integrated” or “the concept map accomplishes the frame”). They are formally
equivalent to rules (their representation is similar). An example of a simple
frame could be “wind instrument”. If a concept map about a concept c
instantiates this frame, then we can say that c is a “wind instrument” (i.e.
it would have the generic characteristics expected for the sound of such an
instrument, such as a blow, attack − steady − decay sequence, etc.). Frames
are extremely important in Divago and they can be seen as information
moulds which can be used to shape new concepts.

– Integrity constraints are simple rules (with false consequent) that serve to
identify inconsistencies (e.g. a sound cannot have a crescendo and diminuendo
at the same time). These constraints, however, do not imply the elimination
of the concepts that violate them, rather they are pressures against the gen-
eration of these concepts.

2.2 The Architecture

In Fig. 2, we show the architecture of Divago. The Knowledge Base comprises
a set of concepts (each normally consisting of a concept map) and a generic

domain, which has generic background knowledge (e.g. an isa hierarchy, a set of
frames and integrity constraints). For the work presented here, the concepts of
the Knowledge Base must be sound descriptions as in Fig. 1. In section 3.1, we
will approach this issue in more detail.

The first step for the invention of a new concept (a new sound in the current
context) is the selection of the input knowledge, in this case a pair of concepts
(e.g. sound1 and sound2). Currently, this selection is either given by a user
or randomly chosen. The Mapper then builds a structural alignment between

1 In order to avoid ambiguity, we call each node of a concept map an element.
2 A rule has the form C1 ∨C2 ∨Cn ⇐ P1 ∧P2 ∧Pm, for m premises and n conclusions.



Sound Blending 5

Multi-domain Knowledge Base

Elaboration

C
on

st
ra

in
ts



Goal

Factory

GA

Convergent Strategy

M
ap

pe
r

B
le

nd
er



Fig. 2. The architecture of Divago

(the concept maps of) those two concepts. It then passes the resulting mapping
to the Blender, which then proposes a set of conceptual combinations to be
considered, each one corresponding to a selective projection from the inputs to
the blend. A projection is meant to be the “image” (or the counterpart) in the
blend of an element of the input concepts. For example, in the blend of sound1
and sound2 in Fig. 3, the element sound1 gets projected to sound2, bright gets
projected to the blend untouched (bright) and dark to bright (such that, instead
of dark, sound2 will be bright). In Fig. 3, we sketch a possible mapping as well
as a combination of projections. Notice that not all the elements get projected -
a selective projection (e.g. low in Sound1, vector3 in Sound2); an element from
the inputs either gets projected to a copy of itself (e.g. bright from Sound1), to
a copy of its mapping counterpart when it exists (e.g. dark from Sound2), or it
is not projected at all. Obviously, the number of possible projections is vast for
any two input concepts, thus the search space is extremely large. This search
space is explored by the Factory module.

The Factory is based on a parallel search engine, a genetic algorithm (GA),
which searches for the blend that best complies with the evaluation given by
the Constraints module. Prior to sending each blend to this module, the Factory
sends it to the Elaboration module, where it is subject to the application of
domain or context-dependent knowledge (in the form of rules and frames found
in the generic domain). The GA thus interacts both with the Constraints and
Elaboration modules during the search.

The evaluation of a blend given by the Constraints module is based on
an implementation of the eight Optimality Principles [12], which measure as-
pects such as Topology maintenance, Frame integration or Goal satisfaction.
The Elaboration module essentially applies rule-based reasoning (e.g. the ap-
plication of rules such as the one given in section 2.1). These rules are also part
of the knowledge base.

After reaching a satisfactory solution or a specified number of iterations, the
Factory stops the GA and returns the best solution achieved, also in the form of
a concept map (and with new rules, frames or integrity constraints, in the rare
cases in which these structures are also part of the input concepts and of the



6 J. M. Martins et al.������ ������

��	��

�� ������ ������������ ������� !"#$%& '�����('�����) *+,-./0123456789:;<=����� >? '��� @�A �����B C����@������� ������� !"#$%& '�����B'������ *+,-./0123456789:;<=����� >?


�� ������ C������������ ������� !"#$%& '�����B'������ DEFGHIJKLM456789:;<=�����>? NOPPQRSTUVWXYZQVR
Fig. 3. A blend with its mappings and projections (for the sake of readability, we show
only an excerpt).

blend). Thus, the input and output of Divago is expressed in the same syntax
and with the same kind of knowledge structures as described in section 2.1.

In some cases, the output of Divago is also the input of an Interpretation

module, which produces an interpretation of the new concept. In previous ver-
sions of this system, we made interpreters for 2D [14] and 3D images [15], as
well as textual descriptions of the blend [16]. Of course, these several modalities

were adapted to specific uses and therefore they are not guaranteed to work
in different applications. For the present work, our Interpretation module will
correspond to a Synthesiser, as will be explained in section 3.3.

3 A Case-Study System

This paper reports an extension of Divago to generate blends of sounds. More
specifically, it consists of a knowledge base with sound descriptions, and frames,
rules and integrity constraints that are more appropriate to the sound synthesis
domain. On the output side, a synthesiser interpreter is being developed as
explained in section 3.3.

As a first set of experiments, the concept maps from Fig. 1 were programmed
in Divago, as well as integrity constraints for forbidding concurrence of sound
states (e.g. a sound cannot be long and short at the same time). We also gave
one frame to the system: timbre transfer, which expects the blend to have a
timbre (and its associated vectors) from one input in the context of the other
input. When used in the query, this frame values the transfer of timbres to a
new context. In other words, sounds with the new timbres will be preferred by



Sound Blending 7

the genetic algorithm. The blend generated (from a set of 30 runs) is described
in Fig. 4.

High
Sound

2

Short

Pitch Timbre

D
uration

Numb
er

f 0

Bright
Vector

1

Vector
2

Amplitudes

Tim
e

Const

Fig. 4. A blend of sound1 and sound2 generated by Divago

This output thus needs an interpretation, a signal synthesis that results from
an unambiguous reading of the blends. In the following subsection we will de-
scribe the concepts handled by Divago which will be interpreted by the synthe-
siser.

3.1 Sound Descriptions

Divago needs descriptions at the concept level, preferably in the form of concept
maps. This implies the (always subjective) choice of a language and of abstract
level primitives to describe sounds.

Four general characteristics are commonly used to describe sound [17]: pitch,
duration, timbre and loudness.

All these attributes are subjective, each being dependant on more than one
measurable physical characteristic, such as pressure, frequency, spectrum, enve-

lope, and duration. From these, the least understood are spectrum and envelope.
Spectrum is the space where the frequency content of a sound is pictured, and
each frequency has a corresponding amplitude. Prominent peaks in spectrum
are called partials. Envelope is the time variation of the amplitude (or energy)
of sound.

Pitch is the attribute by which sounds can be ordered from low to high, most
musical instruments have a defined pitch, except for some percussion instru-
ments. Although pitch depends strongly on the frequency of the fundamental
tone, it is also influenced by the intensity of the sound and its high frequency
components (spectrum). Loudness is a perceptual measure of the intensity of
sound. It depends mainly on sound pressure exerted on the timpani of the ear,
but can also be influenced by the spectrum and duration of the sound. The Amer-
ican National Standards Institute (ANSI) defines timbre as “... that attribute
of auditory sensation in terms of which a listener can judge that two sounds,
similarly presented and having the same loudness and pitch, are different”. This
attribute identifies the sound source and is the most tricky attribute to quantify
as it depends on many different characteristics. Another problem is that there is
no uniform set of concepts to identify and classify timbre. Analogies with visual
and tactile expressions are often created to suppress this lack of concepts in the



8 J. M. Martins et al.

musical domain: sounds can be warm, dark, bright, sweet, metallic, etc. It is
certain that timbre shows a strong dependence on spectral components and en-
velope characteristics. Statistical tests show that the transients of the attack and
decay parts are critical for instrument identification [18]. Pollard and Janssen
[19] designed a graphic representation method called Tristimulus, analogous to
that used for mapping colours. In this method the relations between partials are
mapped in two dimensions, marking the evolution of the partials in time on a
graph, producing a visual representation of timbre. For more detailed description
of the perceptual attributes of sound please refer to [20].

To control the previously described attributes we will use additive synthesis,
as it is easy to understand and is the basis for more advanced techniques, such as
Spectral Modelling. Sounds are synthesised by weighting and adding sinewaves
with different frequencies [3] along the spectrum. These sinewaves model the
partials of the original sound.

In later experiments we use guitar and flute sounds, dividing them into three
distinct parts by inspection of the sound envelope, as shown in Fig.5, resulting
in three concepts connected by the concept map: attack, steady state, and decay.
We now explain these concepts as Sound1 and Sound2 taking the form of decay

sounds.

Fig. 5. Envelope model of a musical instrument sound

Attack is the initial part of the sound. It contains noise components from
the physical interaction between the player and the musical instrument, as well
as resonances from the body of the musical instrument that usually fade away
quickly, and the raising partials from the original vibrating source.

Steady state is the signal part corresponding to sound driven by a player.
In struck or plucked instruments, sounds do not possess steady parts, as they
are not driven by a force or constant blow.

Decay is assumed to be the natural phenomenon of the attenuation of a
sound when it is not fed with external energy. Here we keep the same parameters
as in steady state, except for duration, which we substitute by exponential factors
for each partial. The decay time is the time between the end of the steady state
(or attack in case of instruments without this state) and the time point where
the signal decays to 1/e of its initial value. In reproducing natural sounds it is



Sound Blending 9

Partials 1(f0) 2 3 4 5 6

Sound 1 weight 3.5 3.0 2.0 2.0 3.0 1.0
f0 = 110Hz Time const. (s) 0.5 0.3 0.5 2.0 2.0 2.0

Sound 2 weight 3.0 0.5 0.5 0 0 0
(f0 = 240Hz) Time const. (s) 1/3 1/6 1/9 0 0 0

Table 1. The weights and time constants of the exponentials of the first six partials
of sound examples 1 and 2

crucial to obtain different decays for each partial.The low partials of a string
decay more slowly than the higher ones [21].

The experiments carried out with the sounds shown in Fig. 1 lead us to
associate two vectors to the concept following the arc timbre: amplitudes and
time constants of the partials. Although Sound 1 has a low pitch, which is given
by its fundamental frequency of 110 Hz, the row vectors from Tab. 1 show that
the high amplitudes and long decay times in the high frequencies account for a
bright timbre. The insignificance of the high frequencies in Sound 2 accounts for
its dark timbre.

3.2 Other Structures

Frames For the current setting, we use the same general-purpose frames that
have been applied in other experiments [13, 22, 15]. The frames aframe and
bframe imply the same relational structure as inputs 1 and 2 (resp.), i.e. a
blend that integrates these frames will have the same relations as those inputs.
The frames aprojection and bprojection imply the projection of the same ele-
ments of inputs 1 and 2 (resp.). In other words, when a blend integrates these
frames, the nodes being used come from those inputs. Other frames from previ-
ous works could be used and will certainly be subject to experiments, however
these four frames are the ones that are context independent and have proven to
be fundamental in the construction of blends.

We have also built frames specific to the Sound domain. For the purposes of
this paper, the frames for timbre transfer as described above and used in the
query, for two kinds of sound state sequences (attack → decay and attack →

steady → decay) and for the two kinds of instruments were coded. Below, we
show the coding of the frame steady sound:

frame(steady sound :
steady sound ←− after(attack, steady) ∧ after(steady, decay)

More knowledge could be included, such as the conditions that should be
present for a state to be considered: attack, steady and decay. In table 2, we
show the frames that are currently available in the knowledge base of Divago.



10 J. M. Martins et al.

Frame name Conditions

aframe The blend contains identical structure from input 1

aprojection The blend contains the same elements of input 1

bframe The blend contains identical structure from input 2

bprojection The blend contains the same elements of input 2

timbre transfer The blend results from the transfer of the timbre
of one input to the context of the other input

steady sound The blend follows the sequence of states attack → steady → decay

attack decay sound The blend follows the sequence of states attack → decay

wind instrument The blend contains the characteristics of a wind instrument

plucked instrument The blend contains the characteristics of a plucked instrument

Table 2. Some frames of the generic space

Integrity Constraints As the integrity constraints are essentially domain de-
pendent, we add them as the system progresses in each new domain. For the
experiments referred to in this paper, we only used three integrity constraints
for avoiding sound state concurrence:

false ← duration(X,Y ) ∧ duration(X,Z) ∧ Y 6= Z
false ← timbre(X,Y ) ∧ timbre(Z, Y ) ∧ X 6= Z

false ← pitch(X,Y ) ∧ pitch(Z, Y ) ∧ X 6= Z

Goals As for the rest of the knowledge structures in Divago, the language of
goals allows the same possibilities any Prolog interpreter can offer, which implies
that, when submitting a query to Divago, we can use simple pairs of relations
and reference to frames or even entire logic programs. Nevertheless, experience
has told us that using frames and simple relations is enough to make Divago give
us satisfactory results. For example, for the result shown in Fig. 4, the query
contained only timbre transfer.

3.3 Synthesiser

Spectral and Physical models are synthesis techniques that offer us good perspec-
tives to interpret blended sounds [23], but we leave these for the near future, as
we have been using the more simple technique of additive synthesis programmed
in Matlab, to illustrate the system. At this point we have used the blend created
by Divago, shown in Fig.4 to create a sound that maintains most of the char-
acteristics of Sound2, yet having the timbre deriving from Sound1. The Matlab
code and sound examples used to generate this examples can be found at our
URL [24].

In other experiments we have blended guitar and flute sounds putting empha-
sis on the temporal division of sound addressed in Sec. 3.1, using attack, steady

and decay in a map of concepts. The extraction of the split points between these
regions shown in Fig. 5 is not trivial, and although there are some methods



Sound Blending 11

described by Jensen [25] to extract them, we used only visual inspection. The
amplitudes of the partials of both the steady state of the flute and the guitar
decay, were extracted with an analysis tool developed at the Helsinki University
of Technology [26], and have 19 components.

The resulting blend resembles a guitar sound, as it has the same pitch, the
same decays and the same spectral distribution. The new feature about it is the
existence of a steady state projected by the flute sound, lasting for approximately
2 seconds, with a sampling rate of 22050 Hz.

The blend signal is pictured on Fig. 6. It is important to notice that we are
not only creating a new instrument somewhere between the former instruments,
but we are also exploring the conceptual description and features of the sound.

0 2 4 6 8 10 12 14

x 10
4

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Samples

A
m

pl
itu

de

Fig. 6. The result of a guitar-flute blend

4 Conclusions and Further Work

Taking Divago as a basis for a sound synthesis system seems a promising idea as it
has demonstrated versatility and creative capabilities in various domains. On one
hand, we may test its potential in the domain of sound synthesis, and we may also
develop a method for the generation of sounds based on abstract descriptions,
designed from perceptual or cognitive perspectives of sound analysis. The only
restrictions are that these descriptions should be unambiguous and correspond
to Divagos syntax. Currently, we achieve this with a distinct semantics for each
element of the concept maps used (e.g. “attack” is interpreted as the attack part
of a sound signal). A further goal is the creation of an automatic interpreter to
transpose the knowledge from the concept maps to the synthesiser module. Also,
the use of Physical and Spectral Modelling remain future goals to explore the
concepts associated with the sound production mechanisms.

References

1. Chowning, J., Bristow, D.: FM Theory and Applications: By Musicians for Musi-
cians. Tokyo: Yamaha Music Foundation (1986)



12 J. M. Martins et al.

2. Dodge, C., Jerse, T.: Computer Music. New York: Schirmer Books (1985)
3. Miranda, E.R.: Computer Sound Design: Synthesis Techniques and Programming.

Oxford (UK): Focal Press (2002)
4. Chandra, A.: The linear change of waveform segments causing non-linear changes

of timbral presence. Contemporary Music Review: Timbre Composition in Elec-
troacoustic Music 10 (1994) 157–169

5. Cycling74. http://www.cycling74.com/ (Last visited 6 July 2004)
6. Sasso, L.: Native Instruments Reaktor 3 The ultimate hands-on guide for all

Reaktor fans. Bremen (Germany): Wizoo (2001)
7. Rolland, P.Y., Pachet, F.: Representation de connaissances sur la programmation

de synthetiseurs. In: Recherches et Applications en Informatique Musicale. Volume
1998. Hermes (Collection Informatique Musicale)

8. Miranda, E.R.: An artificial intelligence approach to sound design. Computer
Music Journal 19 (1995) 59–75

9. Ethington, R., Punch, B.: Seawave: A system for musical timbre description. Com-
puter Music Journal 18 (1994) 30–39

10. Garton, B.: The elthar program. Perspectives of New Music 27 (1989) 6–41
11. Schmidt, B.L.: Natural language interfaces and their application to music systems.

In: Proc. of the 5th Audio Eng. Soc. International Conference. (1987) 198–206
12. Pereira, F.C., Cardoso, A.: Optimality principles for conceptual blending: A first

computational approach. AISB Journal 1 (2003)
13. Pereira, F.C., Cardoso, A.: The horse-bird creature generation experiment. AISB

Journal 1 (2003)
14. Pereira, F.C., Cardoso, A.: The boat-house visual blending experience. In: Proc.

to the 2nd Workshop on Creative Systems, ECAI’02 (2002)
15. Ribeiro, P., Pereira, F.C., Marques, B., Leitao, B., Cardoso, A.: A model for

creativity in creature generation. In: Proc. of the 4th Conference on Games Devel-
opment (GAME ON’03), EuroSIS / University of Wolverhampton (2003)

16. Pereira, F.C., Gervás, P.: Natural language generation from concept blends. In:
AISB’03 Symposium on AI and Creativity in Arts and Science, SSAISB (2003)

17. Rossing, T.: The Science of Sound. Addison-Wesley (1990)
18. Berger, K.W.: Some factors in the recognition of timbre. J. Acoust. Soc. of America

36 (1964)
19. Pollard, H., Jansson, E.: A tristimulus method for the specification of musical

timbre. Acustica 51 (1982)
20. Cook, P.: Music, Cognition, and Computerized Sound. The MIT Press (1999)
21. Fletcher, N., Rossing, T.: The Physics of musical instruments. Springer-Verlag

New York Inc. (1991)
22. Pereira, F.C.: Experiments with free concept generation in Divago. In Cardoso,

A., Bento, C., Gero, J., eds.: Proc. of the 3rd Workshop on Creative Systems,
IJCAI-03 (2003)

23. Smith, J.O.: Viewpoints on the history of digital synthesis. In: Proc. Int. Computer
Music Conf. (ICMC-91). (1991) 1–10

24. Martins, J.M. http://eden.dei.uc.pt/˜jpmm/CC04/ (Last visited 6 July 2004)
25. Jensen, K.: Envelope model of isolated musical sounds. In: 2nd COST G-6 Work-

shop on Digital Audio Effects (DAFx99). (1999)
26. Välimäki, V., Tolonen, T.: Development and calibration of a guitar synthesizer. J.

Audio Eng. Soc. 46 (1998) 766–778


