
Evolving Musical Performance Profiles
 Using Genetic Algorithms with Structural Fitness

Qijun Zhang Eduardo Reck Miranda
Computer Music Research

School of Computing, communications and Electronics
University of Plymouth, UK
Drakes Circus, PL4 8AA

(+44) 1752 232579
{qijun.zhang, eduardo.miranda}@plymouth.ac.uk

ABSTRACT
This paper presents a system that uses Genetic Algorithm (GA) to
evolve hierarchical pulse sets (i.e., hierarchical duration vs.
amplitude matrices) for expressive music performance by
machines. The performance profile for a piece of music is
represented using pulse sets and the fitness (for the GA) is derived
from the structure of the piece to be performed; hence the term
“structural fitness”. Randomly initiated pulse sets are selected and
evolved using GA. The fitness value is calculated by measuring
the pulse set’s ability of highlighting musical structures. This
measurement is based upon generative rules for expressive music
performance. This is the first stage of a project, which is aimed at
the design of a dynamic model for the evolution of expressive
performance profiles by interacting agents in an artificial society
of musicians and listeners.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: General – Cognitive simulation.
J.5 [Arts and Humanities]: Performing arts.

General Terms
Algorithms, Design, Experimentation, Human Factors.

Keywords
Application, art and music, entertainment and media.

1. INTRODUCTION
Music performances with proper expressions are defined as
expressive music performances. "Proper expressions" is what
makes music interesting and sound alive. In the context of
Western tonal music, there is a commonly agreed notion that
expression is conveyed in a music performance by delicate
deviations of the notated musical score during the performance.
Thus, expressive music performance research is aimed at
establishing why, where and how these deviations take place in a

piece of music. Interestingly, even though there are many
commonalities in musical performance practices, these deviations
can vary substantially from performance to performance, even
when the same performer plays the same piece of music more
than once. This is one of the main reasons for employing Genetic
Algorithms (GA) to evolve performance profiles. This rationale
will become clearer as this paper develops.

One of the objectives of designing computational models of
expressive performance is to connect the properties of a musical
score and performance context with the physical parameters of a
performance, such as timing, loudness, tempo, articulation and so
on. These models help us to gain a better understanding of
expressive music performance and provide technology to
implement systems to perform music. Different strategies have
been employed in expressive performance research (e.g., analysis-
by-measurement, analysis-by-synthesis, machine learning and so
on) in order to capture common performance principles.
Comprehensive reviews about these works can be found in [7, 10].

As a matter of fact, social factors, including the influence of
historical practices and the interactions between performers and
audience, play an important role in music performance [8].
However, the frequently used strategies can help little to
investigate this aspect. Therefore, the aim of our research is to
build an evolutionary simulation model that takes into account
these social factors by simulating the interactions among
performers and listeners, through which expressive music
performance profiles emerge as a result of musical constraints and
social pressure.

This paper presents the first stage of our project, which is a GA-
based system that evolves performance profiles with fitness rules
derived from musical constraints; in this case, from the structure
of the pieces to be performed. The system evolves suitable
performance profiles from randomly initiated ones using GA
combined with generative rules of expressive music performance
[2]. We apply hierarchical pulse set to represent performance
profiles, which define deviations for note duration and amplitude
values when playing a piece of music (in MIDI format). The
fitness value of a pulse set is calculated according to several rules
derived from the research into perception of musical structure.
Rather than directly constructing performance profile with these
rules, GA is used to search for suitable pulse sets to perform a
piece.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’06, July 8–12, 2004, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007…$5.00.

2. MUSICAL PERFORMANCE WITH
HIERARCHICAL PULSE SET
In this section we introduce the notion of pulse sets, and how we
use them as performance profiles to perform musical pieces.

2.1 Notion of pulse set
Figure 1.a shows a pulse represented as a curve of measurements
of finger pressure on a pressure sensor pad. The information in a
pulse is a wrap of specific temporal patterns with amplitude
patterns, and can be quantified as real numbers (width and height
correspond to duration and amplitude, respectively), as depicted
in Figure 1.b. A pulse can operate at different levels of temporal
organization and can be grouped into a hierarchical structure [3].
Manfred Clynes proposed to represent a hierarchical pulse set as a
matrix of duration and amplitude values (shown in figure 1.c),
which defines the deviations of the physical attributes of musical
notes. This makes it possible to generate computer performance,
by modulating the physical attributes of musical notes according
to these deviations.

 a. b. c.
Figure 1. Illustration of a pulse and the notion of hierarchical

pulse sets. (a) A pulse represented as finger pressure
measurements in time. (b) A representation of pulse as a wrap

of real numbers (duration vs. amplitude). (c) A hierarchical
pulse set derived from grouping pulses.

2.2 Pulse sets as performance profiles
We adopted the notion of hierarchical pulse sets to represent
performance profiles in our work for three reasons. Firstly, the
choices of notes’ duration and amplitude significantly influence
the expressive quality of a music performance, although not fully.
Secondly, the hierarchical nature of pulse sets matches important
features of most music genres; e.g., the notions of grouping and
hierarchical structures. Finally, we regard hierarchical pulse sets
as rather compact and informative forms for generative music
interpretation.

Table 1 shows an example of a hierarchical pulse set and its
components’ meanings. This example is the quantification of the
pulse set drawn in Figure 1.c. We briefly explain this example
below and also introduce the values’ ranges.

2.2.1 Representation of a pulse set
In the first line, 8 defines that the smallest unit of the music to be
operated on is the eighth note. The other possible values here
could be 32, 16 or 4. That is, in the present version of the system,
the shortest note can be a thirty-second note, a sixteenth note, an
eighth note or a quarter note.

In this example, there are 4, 4 and 3 elements in each level,
respectively, from Level 3 (lowest) to Level 1. All the elements in
a lower level are part of one element in its upper level. Therefore,
as depicted in Figure 1.c, an element in Level 2 equals to the total
length of Level 3, that is 4×eighth notes=a half note. Similarly,
one unit in Level 1 has the entire length of all elements in Level
2. Assuming that there are four beats in each bar, then this pulse
set defines three 2-bar groups. In our system, the number of
elements in one level is valid if it is an integer higher than 2 and
lower than 9 (2 and 9 are inclusive).

Since a hierarchical pulse set informs the deviation of durations
and amplitudes of notes, this information is given from the third
to the last line in the representation of a pulse set. In our system,
the duration value can be any integer between 75 and 125, and the
amplitude value varies from 0 to 1.5.

Table 1. Representation of pulse set and explanation.
Pulse set example Meaning

The length of note at the lowest level

Number of elements in three levels
(From the lowest level to the highest)
Level 3 Amplitude (lowest level)

Level 3 Duration

Level 2 Amplitude

Level 2 Duration

Level 1 Amplitude

8

4 4 3

0.339 0.762 0.953 0.319

73 93 66 124

0.453 0.798 0.498 1.333

62 103 114 118

1.398 1.476 1.864

73 121 120 Level 1 Duration

2.2.2 Calculating a deviation pattern from a pulse set
As we explained earlier, the pulse set example in Table 1 defines
a performance profile for a 6-bar segment. Defined by its
hierarchical feature, there are 48 (4×4×3) pulse elements that
together compose the segment. The deviation pattern is refined
for each one of them. The duration and amplitude for each
element are calculated in a top down manner, by multiplying the
parameters of corresponding elements in different hierarchical
levels. For instance, the 1st and the 40th pulse element (represented
as e1, e40) in this list are defined by the following elements of the
pulse set, respectively:

e1: the 1st in Level 1, the 1st in Level 2, the 1st in Level 3
 e40: the 3rd in Level 1, the 2nd in Level 2, the 4th in Level 3

According to the parameters of the pulse set, the algorithm then
calculates the duration and amplitude values for these two pulse
elements, as shown in Table 2.

Table 2. Calculation for a pulse element in a pulse set.
Note Duration Amplitude

e1 73×62×73 / 1003 1.398×0.453×0.339

e40 120×103×124 / 1003 1.864×0.798×0.319

With this method, we can draw deviation patterns, or envelopes,
for both duration and amplitude values. Once started, these
patterns repeat until the piece finishes. For the sake of clarity,
Figure 2 shows only the first half of a deviation pattern based on

the example pulse set. The index of the beat in the piece is given
by the x axis, while y corresponds to the calculated percentage
deviation of duration or amplitude.

Figure 2. Deviation pattern for the pulse set in Table 1.

2.3 Implementation issues
The musical pieces that were used to test our system were stored
as flat MIDI files, which don’t have any timing deviation (i.e., the
rhythm is exactly as written on the score) and with even (i.e.,
equal) loudness for all notes.

The performance of a piece proceeds as follows: firstly, we look
up its start time in the aforementioned deviation list to infer its
position along with its detailed duration and amplitude. Inspired
by a method proposed by Manfred Clynes [4], a note’s playing
time is given by summing all the durations of the pulse
components (i.e., if this note is longer than the smallest unit),
while the amplitude is defined by the amplitude information of its
first pulse component. Precisely speaking, when we modify the
duration of a note in a MIDI file, we change the file's play back
tempo at the required positions. We reassign a note’s “note-on
velocity” MIDI code value to modify its amplitude.

Through the above modification, the system produces a new
MIDI file with added expressions. Then, this is evaluated
according to the performance principles introduced below.

3. FITNESS FUCTION BASED ON
MUSICAL STRUCTURE
It is commonly agreed that there is a strong relation between
expression in music performance and music structure [9]. This is
an important reason for the existence of commonalities in
different performers’ performances of the same piece, and thus a
necessary hypothesis for modeling expressive music performance.
Those using the analysis-by-synthesis approach have built models
loaded with comprehensive rules. However, a critical problem of
these rule-based systems is the way in which they combine these
rules [5]. They can be combined in many different ways and most
combinations can generate conflicting situations with no objective
solution. The reality is that there are different ways to perform a
piece of music, which make it very difficult to fully formalize
musical performance with rules.

We have no desire to compile a comprehensive collection of fixed
performance rules manually, not only because of the above
problem, but also because this is not the main point of our
research. Rather, we are interested in a system that can evolve

these rules dynamically. Nevertheless, we undoubtedly need
guidance from musically meaningful rules (e.g., musical structure,
etc.) to evaluate whether a pulse set works well for a certain
performance profile.

For this purpose, our approach is to design descriptive
performance principles without quantified regulations. And then
we employ GA, whose fitness function is informed by these
principles, to select and evolve suitable pulse sets, starting from
randomly generated sets. In this sense, the usage of GA is ideal
here because otherwise it would be hard to design manually a
decent performance profile based on such descriptive principles.
Furthermore, GA can evolve different and suitable pulse sets for
the same piece. This diversity is a noticeable phenomenon in real
performances, and also a prerequisite for the next stage of our
research.

3.1 Structure Analysis
In order to use any structural principles for calculating fitness
values, firstly we need to analyze the structure of piece in
question. In the present version of our system, we use David
Temperley's software Melism, which performs several structural
analysis such as metrical analysis, group analysis, harmony
analysis and key analysis [9].

3.2 Selected performance principles

Our descriptive performance principles are very much inspired by
Eric Clarke’s generative rules for expressive performance [2]. We
associate expressions in performance with the piece’s structure
features of grouping, accentuation and cadence. Thus, the fitness
value of a pulse set consists of three parts, FitGrouper, FitAccent
and FitCadence.

3.2.1 FitGrouper
FitGrouper is obtained by a pulse set’s fitness in relation to two
rules, mainly concerning the notes’ duration at group boundaries.
These two rules are:

Rule 1: The time deviation of the last note of a group has either
larger or smaller timing deviation than both the notes before and
after it.
Rule 2: The last note of a group is always lengthened in order to
delay the following note and signify the starting of a new group.

The value of FitGrouper is dependent on a pulse set’s violation of
above two rules. A parameter numVio (initialised equal to 0)
increases whenever the pulse set breaks either Rule 1 or Rule 2.
If the number of groups in the piece is Ngroup, we define

groupN
numVioFitGrouper −= 1

 . The maximum value of FitGrouper is

equal to 1.

3.2.2 FitAccent
FitAccent is an evaluation of how well the notes' loudness contour
in an “interpreted” piece (i.e., after the flat MIDI file is modulated
by a given pulse set) fits the metrical analysis. The rule used here
is as follows:

Rule 3: Preference should be given to the contour of notes'
loudness that has the most similar shape to the music's
accentuation analysis.

Given two successive notes N0 and N1, FitAccent is produced by
calculating:

(i) The accentuation information (b0, b1) from the structure
analysis, and
(ii) The Velocity information (v0, v1) from the interpreted MIDI
file.

Because the accent value bi varies from 0 to 4, firstly, we
normalize the velocity difference (v1-v0) to integers in the range
of [-4, 4]. Then we assign a reward value between 0 and 1 to
parameter x based on the difference between (v1-v0) and (b1-b0).
The closer they are to each other, the larger the value assigned to
x. If the number of notes in the piece is Nnote, we define

)10(
1

1

1 ≤≤
−

==
∑ −

i
note

N
i x

N
x

FitAccent
note . As with Fit Grouper, the maximum

value of FitAccent is equal to 1.

3.2.3 FitCadence
FitCadence takes into account the strong chord progressions in a
piece, which can also indicate group boundaries. While both
FitGrouper and FitAccent work at the note level, FitCadence
judges the performance features of a higher group level. The rule
for calculating FitCadence is as follows:

Rule 4: Both segments corresponding to two chords in a cadence
(e.g., V→I, IV→ I, or Dominant→Tonic, Subdominant→Tonic,
respective) should be lengthened. Different weights are set for
different categories of cadences because they have varying
importance on a piece’s structure.
As with the FitGrouper, the value of FitCadence is also decided
by a pulse set’s violation of Rule 4. And the pulse set will receive
more penalties when it breaks the rule with stronger cadences. If
the number of cadences in a piece is Ncadence, and we assign
weight wi to the ith cadence, then

cadence

Ncadence
i

N
w

FitCadence ∑−= 11
. Wit with the previous two fitness

measures, the maximum value of FitCadence is equal to 1.
In the present version of our system, we define the total fitness of
a pulse set to be the sum of FitGrouper, FitAccent and
FitCadence. That is, Fitness = FitGrouper + FitAccent +
FitCadence, with maximum value equal to 3.

4. EVOLUTION PROCEDURE
It this section we introduce the procedure to evolve suitable pulse
sets from scratch.

4.1 Genome representation of a pulse set
A pulse set is represented by a long string of real numbers in the
same order as shown in Table 1. In this string, we separate lines
with “;” and insert “,” between elements in the same line. This
makes it convenient to access and operate on parameters of
different hierarchical levels. An additional number, either 0 or 1,
is added at the end of an individual pulse set. This is used to
indicate one of the possible two ways of applying a crossover
operation, which will be clarified later.

As an example, the pulse set in Table 1 is represented as follows
(for the sake of clarity, we omitted Level 2 and Level 1); the
additional number at the end of the string is equal to 0:
8;4,4,3;0.339,0.762,0.953,0.319;73,93,66,124; … ;0

4.2 Initialization of the first generation
The individual pulse sets of the first generation are randomly
generated. For the moment, we have established that all pulse sets
have 3 levels. All other pulse set values are randomly generated,
including:
(1) The length of quickest note
(2) The number of elements in each hierarchical level
(3) Amplitude and duration values for each element in every level
(4) The additional number at the end of the string (for selecting
the crossover operation)

4.3 Evolution algorithm
For every generation, each pulse set is used to modulate the flat
MIDI file, as described in section 2, and a fitness value is
calculated according to the definition of fitness functions
introduced in section 3. Thus, we obtain an array of values
Fit0=f1,f2,. . . ,fn, where fi is the fitness value of the ith individual
pulse set. The offspring pulse sets for the next generation are
created on the basis of this fitness array. The procedure is as
follows:
(1) Calculate the fitness values of the current generation P0
(2) Select parent candidates to compose of population P01
(3) Operate mutation on P01 and get population P02
(4) Operate crossover on pairs of pulse sets in P02 to get
population P03
(5) Rank the fitness values of Generation P0 and P03 and the best
half become generation P1
(6) Repeat the steps from (1) to (5) until completing a preset
number of generations.

4.4 Genetic operations
In this section we explain the three genetic operations used in the
evolution procedure: selection, mutation and crossover,
respectively.

4.4.1 Selection
Based on Tobias Blickle’s [1] comparative study of various
widely used selection operators in GA (such as, tournament,
linear and exponential rankings, and proportional), we opted for
using exponential ranking. This is because we wish to keep a
certain degree of diversity in the evolutionary process and
exponential ranking has proved to work well for this purpose. The
pseudo-code of our exponential ranking selection is as follows:

Exponential-ranking(c, J1, … , Jn)

J←sorted population J according to fitness (first is the worst)
S0←0
For i←1 to N do
si←Si-1 + pi

Do

For i←1 to N do
r←random[0,sN]
Ji←Jk such that si-1 ≤ r < sk

Do
Return

Here, the value of c is randomly generated every generation from
0.75 to 1.

4.4.2 Mutation
Considering the hierarchical property of a pulse set, we have
employed four different ways for operating mutation on a single
pulse set. Given a pulse set, Figure 3 shows examples of how each
of the following mutation schemes work: Ma, Mb, Mc and Md.
Ma: Randomly modify every duration or amplitude values in the
pulse set. The range of changes for amplitude is [-0.1, 0.1], and
for duration is [-5, 5].
Mb: Append new duration and amplitude wraps or delete existing
wraps from the end of the string. The number of added or
removed elements is defined randomly, with the condition that the
resulting pulse set is a valid pulse set. Also, if new elements are
added, they are generated randomly. The length of the quickest
note in the pulse set may be changed in this mutation, as we
generate a new value for it randomly.
Mc: Swap the order of elements in the same level of the pulse set
randomly, but keep the duration and amplitude wraps.
Md: Swap the order of hierarchical levels in the pulse set
randomly.

Figure 3. Examples of mutation schemes.

An integer between 1 and 4 is generated randomly in each
generation. This number defines which mutation methods can be
used. For example, if we obtain 2, then only the first two mutation
methods (Ma and Mb) are used in the respective generation.
Then, whether to perform Ma or Mb to an individual pulse set is
also decided randomly.

4.4.3 Crossover
To maintain the evolved parameters in hierarchical levels, we
only allow for segmentation and crossover at the positions of
complete hierarchical levels. Therefore, crossover enables two
parents pulse sets to exchange some of their component levels.
For example, let us consider the crossing over of two pulse sets:
Px and Py. They can be respectively represented as X1X2X3x and
Y1Y2Y3y, where Xn or Yn refers to the nth level of Px or Py,

including duration and amplitude parameters. The variable x or y
represents the number at the end of Px or Py, which can value
either 0 or 1.

Here we use the value of x-y (which can be 0, 1, or -1) to decide
the way in which to perform crossover with Px and Py. This
includes the choice of one-point crossover or two-point crossover,
as well as which levels of the parent pulse sets the crossover will
operate on. Possible crossovers are shown in Table 2. If x equals
to y through crossover, then Px and Py exchanges their middle
level, keeping all other information unchanged. If x=0 and y=1,
then Px and Py exchange their lowest level along with the last
number. Otherwise, if x=1 and y=0, then the highest level of Px
and Py are crossed over.

Table 3. Crossover scheme.

 y
x 0 1

0 X1Y2X3x Y1X2Y3y X1X2Y3y Y1Y2X3x
1 X1Y2Y3y Y1X2X3x X1Y2X3x Y1X2Y3y

5. DEMONSTRATION
As a demonstration, we present an example with the melody of
Robert Schumann’s Träumerei. Figure 4 shows the structural
analysis used for calculating the fitness value, including grouping
structure, metrical analysis and harmonic progression. Group
boundaries are noted by “xx”, vertically positioned under the
staves at segmenting positions. The numbers at the bottom of the
notes correspond to accent information (from metrical analysis).
The chord names above the staves indicate chord progressions.

Figure 4. The soprano part of Robert Schumann’s Träumerei
and its structural analysis.

Figure 5. The best fitness value of 35 runs.

The results discussed below were generated by running the
evolution procedure 35 times. In each run, 100 individual pulse
sets are randomly generated for the first generation, and then we
let them evolve for 100 generations.
For each run, we have recorded for every each generation: a)
every pulse set’s fitness values including FitGrouper, FitAccent,
FitCadence and the total fitness (i.e., the sum of the three) and b)
the best pulse set. Figure 5 depicts the final best fitness values that
we recorded from all runs; that is, these are the best fitness values
of generation number 100 for each of the 35 runs. As shown in
Figure 5, “excellent” pulse sets whose fitness values reached 3.0
have evolved in the 4th, 6th, 15th, 23rd and 28th runs. This does not
necessarily mean that each of these runs produced only one
“excellent” pulse set each. In fact, each run produced more than
one. Although most of these “excellent” pulse sets may share
identical configurations (which is a pulse set’s basic structure
decided by the first two lines of its representation), they always
have different duration and amplitude parameters, resulting in
different performance profiles. For example, the system evolved
two “excellent” pulse sets with two different configurations in the
15th run. Those “excellent” pulse sets from different runs are
obviously different from each other. We list some examples in
Table 4: two pulse sets evolved in the 4th run and two evolved in
the 15th run.

Table 4. Example of “excellent” pulse set.

Run4_1 Run15_1
8
8 2 2
1.464 0.767 0.925 0.15 1.262 0.622 1.025 0.388
97 86 116 107 123 106 60 113
1.046 1.004
95 115
1.282 1.331
118 121

16
4 4 2
1.382 0.573 0.676 0.109
125 116 100 80
1.369 0.875 1.107 0.883
116 115 109 80
1.133 1.116
115 122

Run4_2 Run15_2
8
8 2 2
1.478 0.582 1.036 0.344 1.301 0.305 1.022 0.606
101 84 121 101 123 113 54 101
1.057 1.05
100 115
1.393 1.348
124 121

16
4 4 3
1.418 0.598 0.525 0.232
122 120 102 90
1.336 0.853 1.087 0.87
116 123 111 88
1.154 1.113 1.096
118 122 110

From Table 4 we can infer that both pulse sets evolved in Run 4
have a repeated deviation pattern that consists of
eighth_note×8×2×2=16 beats, which corresponds to the length of
4 bars. The other two pulse sets evolved in Run 15 have different
configurations: Run 15_1 is for a 2-bar period
(sixteenth_note×4×4×2=8 beats) and Run 15_2 is for a 3-bar

period (sixteenth_note×4×4×3=12 beats). Figure 6 depicts their
deviation pattern in 8 beats (2 bars).

At present, we judge if a pulse set is suitable for the piece mainly
depending on how well they fulfill the devised rules for the fitness
function. This can be done by checking whether the important
notes’ deviations correspond to those described in the rules. Here
we give a brief analysis taking the examples in Figure 6. Firstly,
we can list the group boundaries in the piece based on the score in
Figure 4. They are the notes at the 10th, 18th, 26th, 37th beat and so
on, always taking more than one beat. It is not hard to find out
from Figure 6.a that each of these notes’ duration (adding all the
beats occupied by each note) deviates mostly compared with its
two neighbor notes. In this way, it is fair to say that both Rule 1
and Rule 2 have been satisfied because all notes were lengthened.
Secondly, for Rule 3, as it is the only rule affecting notes’
amplitude in our present system, we can see in Figure 6.b that all
those “excellent” pulse sets follow identical amplitude deviation
patterns, which match the accentuation information shown in the
score. Finally in terms of Rule 4, there are several cadences such
as V→I, IV→ I in this piece. We have checked that in most of the
cases, both groups of notes composing the two chords of a
cadence were lengthened. Other violations might have occurred
because the concurrent effect of Rule 1 and Rule 2.

Figure 6. Examples of deviation pattern by evolved pulse sets.

It starts from the 4th beat because the piece actually begins
with an upbeat at the 4th beat.

In another analysis, we have drawn four curves for each run, for
the values of FitGoruper, FitAccent, FitCadence and the total
fitness, respectively, in order to follow the development of fitness
values through 100 generations. This was done according to the
corresponding data of the best pulse set in each generation. Figure
7 shows the geometric means of these 35 groups of curves
accordingly. These fitness curves show how the best pulse sets
changed through the generations. We can observe that FitGrouper
and FitCadence, which are fitness components defined as
penalties for breaking the rules, have always played a dominant
role in the beginning of the evolution. It is also possible to
observe that after both of them have reached the maximum value
1, the configuration of the best pulse set in the following

generations had hardly changed. During this sustain period, the
best pulse set gradually spreads over the population, which
indicates convergence, even though modifications on the duration
or amplitude parameters kept taking place. Although this is a
dominant development, it is not absolute because there still is the
possibility that some exceptionally good configuration had
emerged; a good example of this are the pulse sets in the 15th run.

We also have done some other experiments to observe the effects
of mutation on the best fitness value that pulse sets can have. For
example, by adding the step to randomly generate a new value for
the quickest note of every mutation scheme, we found that it is
hard to evolve pulse sets with fitness value as high as 3.
The mutation scheme Ma is always performed in the present
version of the system. Although this has been decided on purpose,
it would be interesting to observe what happens if we change the
order of the mutation schemes.

Figure 7. Fitness trace. This is achieve by averaging the fitness

value of the evolved best pulse set in the same generation
across 35 runs

6. CONCLUDING REMARKS
In this paper we introduced a novel application of GA: to evolve
music performance. GA evolves suitable pulse sets for musical
performance using fitness rules derived from the structure of the
piece to be performed. Furthermore, the “excellent” pulse sets
evolved by the GA, no matter whether they were from the same
run or not, have shown diversity and also commonality. This
could be observed both objectively (by comparing the figures of
deviation patterns by different pulse sets) and subjectively (by
listening to the “interpreted” MIDI files).
When listening to pieces performed with the evolved pulse sets,
we can perceive the expressive dynamics of the piece, mainly due
to lengthening or shortening of related notes. However, we
acknowledge that such subjective assessment of the results does
not hold much scientific value. We are currently developing
methodology to validate the evolved pulse sets in comparison
with human performanced. The study of Bruno Repp [5] is a very
helpful resource for this purpose.
We are currently testing the systems with different settings and
variations with the objectives of gaining a better understanding of

its behavior and fine-tuning it for the next stage of our research
with multiple interactive agents. Other ongoing work includes:
(1) We are taking into account performance principles associated
to or determined by melody. Melodic information will improve
the grouping and accentuation analysis.
(2) We are implementing a mechanism to vary the number of
hierarchical levels in order to render the model more robust when
it encounters more complex music structures. We feel that
sometimes the model would benefit from being able to cope with
more hierarchical levels when evolving pulse sets for pieces of
higher complexity than the pieces we have tested so far.

(3) We are devising a new way to compute the fitness function, as
a weighted sum of the fitness values for different performance
principles. We are interested in letting these weights to evolve
with the pulse sets.

7. REFERENCES
[1] Blickle, T. “A comparison of selection schemes used in

genetic algorithms”. Technical report, Computer Engineering
and Communication Networks Lab (TIK), Swiss Federal
Institute of Technology (ETH) Zurich (1995).

[2] Clarke, E. F. “Generative Processes in Music”. The
Psychology of Performance, Improvisation, and Composition.
Oxford Science Publications (1988).

[3] Clynes, M. “Generative principles of musical thought
integration of microstructure with structure”. Journal For The
Integrated Study Of Artificial Intelligence, Cognitive
Science And Applied Epistemology 3 (1986) 185-223.

[4] Clynes, M. “Microstructural musical linguistics: composers’
pulses are liked most by the best musicians”. Cognition.
International Journal of Cognitive Science, 55, (1995), 269-
310.

[5] Davidson, J. W. and North, A. C. The Social Psychology of
Music. Oxford University Press (2006).

[6] Oosten, P. van “Critical study of Sundberg’s rules for
expression in the performance of melodies”. Contemporary
Music Review, 1993, Vol.9, 267-274

[7] Poli, G. D. “Methodologies for expressiveness modelling of
and for music performance”. Journal Of New Music
Research 33 (2004) 189-202.

[8] Repp, B. H. “Diversity and commonality in music
performance: An analysis of timing microstructure in
Schumann's Traumerei”. Journal of the Acoustical Society of
America (92).

[9] Temperly, D. The Cognition of Basic Musical Structures.
The Mit Press (2004).

[10] Widmer, G. and Goebl, W. “Computational models of
expressive music performance: The state of the art”. Journal
of New Music Research 33 (2004) 203-216.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

