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ABSTRACT 
This paper presents a system that uses Genetic Algorithm (GA) to 
evolve hierarchical pulse sets (i.e., hierarchical duration vs. 
amplitude matrices) for expressive music performance by 
machines. The performance profile for a piece of music is 
represented using pulse sets and the fitness (for the GA) is derived 
from the structure of the piece to be performed; hence the term 
“structural fitness”. Randomly initiated pulse sets are selected and 
evolved using GA. The fitness value is calculated by measuring 
the pulse set’s ability of highlighting musical structures. This 
measurement is based upon generative rules for expressive music 
performance. This is the first stage of a project, which is aimed at 
the design of a dynamic model for the evolution of expressive 
performance profiles by interacting agents in an artificial society 
of musicians and listeners.  

Categories and Subject Descriptors 
I.2 [Artificial Intelligence]: General – Cognitive simulation.     
J.5  [Arts and Humanities]:  Performing arts. 

General Terms 
Algorithms, Design, Experimentation, Human Factors. 

Keywords 
Application, art and music, entertainment and media. 

1. INTRODUCTION 
Music performances with proper expressions are defined as 
expressive music performances. "Proper expressions" is what 
makes music interesting and sound alive. In the context of 
Western tonal music, there is a commonly agreed notion that 
expression is conveyed in a music performance by delicate 
deviations of the notated musical score during the performance. 
Thus, expressive music performance research is aimed at 
establishing why, where and how these deviations take place in a 

piece of music. Interestingly, even though there are many 
commonalities in musical performance practices, these deviations 
can vary substantially from performance to performance, even 
when the same performer plays the same piece of music more 
than once. This is one of the main reasons for employing Genetic 
Algorithms (GA) to evolve performance profiles. This rationale 
will become clearer as this paper develops. 

One of the objectives of designing computational models of 
expressive performance is to connect the properties of a musical 
score and performance context with the physical parameters of a 
performance, such as timing, loudness, tempo, articulation and so 
on. These models help us to gain a better understanding of 
expressive music performance and provide technology to 
implement systems to perform music. Different strategies have 
been employed in expressive performance research (e.g., analysis-
by-measurement, analysis-by-synthesis, machine learning and so 
on) in order to capture common performance principles. 
Comprehensive reviews about these works can be found in [7, 10].  

As a matter of fact, social factors, including the influence of 
historical practices and the interactions between performers and 
audience, play an important role in music performance [8]. 
However, the frequently used strategies can help little to 
investigate this aspect. Therefore, the aim of our research is to 
build an evolutionary simulation model that takes into account 
these social factors by simulating the interactions among 
performers and listeners, through which expressive music 
performance profiles emerge as a result of musical constraints and 
social pressure. 

This paper presents the first stage of our project, which is a GA-
based system that evolves performance profiles with fitness rules 
derived from musical constraints; in this case, from the structure 
of the pieces to be performed. The system evolves suitable 
performance profiles from randomly initiated ones using GA 
combined with generative rules of expressive music performance 
[2]. We apply hierarchical pulse set to represent performance 
profiles, which define deviations for note duration and amplitude 
values when playing a piece of music (in MIDI format). The 
fitness value of a pulse set is calculated according to several rules 
derived from the research into perception of musical structure. 
Rather than directly constructing performance profile with these 
rules, GA is used to search for suitable pulse sets to perform a 
piece.  
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2. MUSICAL PERFORMANCE  WITH 
HIERARCHICAL PULSE SET 
In this section we introduce the notion of pulse sets, and how we 
use them as performance profiles to perform musical pieces.  

2.1 Notion of pulse set 
Figure 1.a shows a pulse represented as a curve of measurements 
of finger pressure on a pressure sensor pad. The information in a 
pulse is a wrap of specific temporal patterns with amplitude 
patterns, and can be quantified as real numbers (width and height 
correspond to duration and amplitude, respectively), as depicted 
in Figure 1.b. A pulse can operate at different levels of temporal 
organization and can be grouped into a hierarchical structure [3]. 
Manfred Clynes proposed to represent a hierarchical pulse set as a 
matrix of duration and amplitude values (shown in figure 1.c), 
which defines the deviations of the physical attributes of musical 
notes. This makes it possible to generate computer performance, 
by modulating the physical attributes of musical notes according 
to these deviations.  

 
           a.                                     b.                                    c.                        
Figure 1. Illustration of a pulse and the notion of hierarchical 

pulse sets. (a) A pulse represented as finger pressure 
measurements in time. (b) A representation of pulse as a wrap 

of real numbers (duration vs. amplitude). (c) A hierarchical 
pulse set derived from grouping pulses.  

2.2 Pulse sets as performance profiles 
We adopted the notion of hierarchical pulse sets to represent 
performance profiles in our work for three reasons. Firstly, the 
choices of notes’ duration and amplitude significantly influence 
the expressive quality of a music performance, although not fully. 
Secondly, the hierarchical nature of pulse sets matches important 
features of most music genres; e.g., the notions of grouping and 
hierarchical structures. Finally, we regard hierarchical pulse sets 
as rather compact and informative forms for generative music 
interpretation.  

Table 1 shows an example of a hierarchical pulse set and its 
components’ meanings. This example is the quantification of the 
pulse set drawn in Figure 1.c. We briefly explain this example 
below and also introduce the values’ ranges.  

2.2.1 Representation of a pulse set 
In the first line, 8 defines that the smallest unit of the music to be 
operated on is the eighth note. The other possible values here 
could be 32, 16 or 4. That is, in the present version of the system, 
the shortest note can be a thirty-second note, a sixteenth note, an 
eighth note or a quarter note.  

In this example, there are 4, 4 and 3 elements in each level, 
respectively, from Level 3 (lowest) to Level 1. All the elements in 
a lower level are part of one element in its upper level. Therefore, 
as depicted in Figure 1.c, an element in Level 2 equals to the total 
length of Level 3, that is 4×eighth notes=a half note. Similarly, 
one unit in Level 1 has the entire length of all elements in Level 
2. Assuming that there are four beats in each bar, then this pulse 
set defines three 2-bar groups. In our system, the number of 
elements in one level is valid if it is an integer higher than 2 and 
lower than 9 (2 and 9 are inclusive).  

Since a hierarchical pulse set informs the deviation of durations 
and amplitudes of notes, this information is given from the third 
to the last line in the representation of a pulse set. In our system, 
the duration value can be any integer between 75 and 125, and the 
amplitude value varies from 0 to 1.5. 

Table 1. Representation of pulse set and explanation. 
Pulse set example Meaning 

The length of note at the lowest level 

Number of elements in three levels 
(From the lowest level to the highest) 
Level 3 Amplitude (lowest level) 

Level 3 Duration 

Level 2 Amplitude 

Level 2 Duration 

Level 1 Amplitude 

8 

4 4 3 

0.339 0.762 0.953 0.319 

73 93 66 124 

0.453 0.798 0.498 1.333 

62 103 114 118 

1.398 1.476 1.864 

73 121 120 Level 1 Duration 

 

2.2.2 Calculating a deviation pattern from a pulse set 
As we explained earlier, the pulse set example in Table 1 defines 
a performance profile for a 6-bar segment. Defined by its 
hierarchical feature, there are 48 (4×4×3) pulse elements that 
together compose the segment. The deviation pattern is refined 
for each one of them. The duration and amplitude for each 
element are calculated in a top down manner, by multiplying the 
parameters of corresponding elements in different hierarchical 
levels. For instance, the 1st and the 40th pulse element (represented 
as e1, e40) in this list are defined by the following elements of the 
pulse set, respectively: 
 

e1:   the 1st in Level 1, the 1st in Level 2, the 1st in Level 3 
  e40:  the 3rd in Level 1, the 2nd in Level 2, the 4th in Level 3 

 

According to the parameters of the pulse set, the algorithm then 
calculates the duration and amplitude values for these two pulse 
elements, as shown in Table 2.  

Table 2. Calculation for a pulse element in a pulse set. 
Note Duration Amplitude 

e1 73×62×73 / 1003 1.398×0.453×0.339 

e40 120×103×124 / 1003 1.864×0.798×0.319 

 
With this method, we can draw deviation patterns, or envelopes, 
for both duration and amplitude values. Once started, these 
patterns repeat until the piece finishes. For the sake of clarity, 
Figure 2 shows only the first half of a deviation pattern based on 



the example pulse set. The index of the beat in the piece is given 
by the x axis, while y corresponds to the calculated percentage 
deviation of duration or amplitude.  

 
Figure 2. Deviation pattern for the pulse set in Table 1. 

2.3 Implementation issues 
The musical pieces that were used to test our system were stored 
as flat MIDI files, which don’t have any timing deviation (i.e., the 
rhythm is exactly as written on the score) and with even (i.e., 
equal) loudness for all notes. 

The performance of a piece proceeds as follows: firstly, we look 
up its start time in the aforementioned deviation list to infer its 
position along with its detailed duration and amplitude. Inspired 
by a method proposed by Manfred Clynes [4], a note’s playing 
time is given by summing all the durations of the pulse 
components (i.e., if this note is longer than the smallest unit), 
while the amplitude is defined by the amplitude information of its 
first pulse component. Precisely speaking, when we modify the 
duration of a note in a MIDI file, we change the file's play back 
tempo at the required positions. We reassign a note’s “note-on 
velocity” MIDI code value to modify its amplitude.  

Through the above modification, the system produces a new 
MIDI file with added expressions. Then, this is evaluated 
according to the performance principles introduced below.   

3. FITNESS FUCTION BASED ON 
MUSICAL STRUCTURE 
It is commonly agreed that there is a strong relation between 
expression in music performance and music structure [9]. This is 
an important reason for the existence of commonalities in 
different performers’ performances of the same piece, and thus a 
necessary hypothesis for modeling expressive music performance. 
Those using the analysis-by-synthesis approach have built models 
loaded with comprehensive rules. However, a critical problem of 
these rule-based systems is the way in which they combine these 
rules [5]. They can be combined in many different ways and most 
combinations can generate conflicting situations with no objective 
solution. The reality is that there are different ways to perform a 
piece of music, which make it very difficult to fully formalize 
musical performance with rules. 

We have no desire to compile a comprehensive collection of fixed  
performance rules manually, not only because of the above 
problem, but also because this is not the main point of our 
research. Rather, we are interested in a system that can evolve 

these rules dynamically. Nevertheless, we undoubtedly need 
guidance from musically meaningful rules (e.g., musical structure, 
etc.) to evaluate whether a pulse set works well for a certain 
performance profile. 

For this purpose, our approach is to design descriptive 
performance principles without quantified regulations. And then 
we employ GA, whose fitness function is informed by these 
principles, to select and evolve suitable pulse sets, starting from 
randomly generated sets. In this sense, the usage of GA is ideal 
here because otherwise it would be hard to design manually a  
decent performance profile based on such descriptive principles. 
Furthermore, GA can evolve different and suitable pulse sets for 
the same piece.  This diversity is a noticeable phenomenon in real 
performances, and also a prerequisite for the next stage of our 
research.  

3.1 Structure Analysis 
In order to use any structural principles for calculating fitness 
values, firstly we need to analyze the structure of piece in 
question. In the present version of our system, we use David 
Temperley's software Melism, which performs several structural 
analysis such as metrical analysis, group analysis, harmony 
analysis and key analysis [9]. 

3.2 Selected performance principles 

Our descriptive performance principles are very much inspired by 
Eric Clarke’s generative rules for expressive performance [2]. We 
associate expressions in performance with the piece’s structure 
features of grouping, accentuation and cadence. Thus, the fitness 
value of a pulse set consists of three parts, FitGrouper, FitAccent 
and FitCadence. 

3.2.1 FitGrouper 
FitGrouper is obtained by a pulse set’s fitness in relation to two 
rules, mainly concerning the notes’ duration at group boundaries. 
These two rules are: 

Rule 1: The time deviation of the last note of a group has either 
larger or smaller timing deviation than both the notes before and 
after it. 
Rule 2: The last note of a group is always lengthened in order to 
delay the following note and signify the starting of a new group. 

The value of FitGrouper is dependent on a pulse set’s violation of 
above two rules. A parameter numVio (initialised equal to 0) 
increases whenever the pulse set breaks either Rule 1 or Rule 2.  
If the number of groups in the piece is Ngroup, we define 

groupN
numVioFitGrouper −= 1

 . The maximum value of FitGrouper is 

equal to 1.  

3.2.2 FitAccent 
FitAccent is an evaluation of how well the notes' loudness contour 
in an “interpreted” piece (i.e., after the flat MIDI file is modulated 
by a given pulse set) fits the metrical analysis. The rule used here 
is as follows: 

Rule 3: Preference should be given to the contour of notes' 
loudness that has the most similar shape to the music's 
accentuation analysis. 



Given two successive notes N0 and N1, FitAccent is produced by 
calculating: 
 
(i) The accentuation information (b0, b1) from the structure 
analysis, and 
(ii) The Velocity information (v0, v1) from the interpreted MIDI 
file. 
 
Because the accent value bi varies from 0 to 4, firstly, we 
normalize the velocity difference (v1-v0) to integers in the range 
of [-4, 4]. Then we assign a reward value between 0 and 1 to 
parameter x based on the difference between (v1-v0) and (b1-b0). 
The closer they are to each other, the larger the value assigned to 
x. If the number of notes in the piece is Nnote, we define 
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value of FitAccent is equal to 1. 

3.2.3 FitCadence 
FitCadence takes into account the strong chord progressions in a 
piece, which can also indicate group boundaries. While both 
FitGrouper and FitAccent work at the note level, FitCadence 
judges the performance features of a higher group level. The rule 
for calculating FitCadence is as follows: 

Rule 4: Both segments corresponding to two chords in a cadence 
(e.g., V→I, IV→ I, or Dominant→Tonic, Subdominant→Tonic, 
respective) should be lengthened. Different weights are set for 
different categories of cadences because they have varying 
importance on a piece’s structure.  
As with the FitGrouper, the value of FitCadence is also decided 
by a pulse set’s violation of Rule 4. And the pulse set will receive 
more penalties when it breaks the rule with stronger cadences. If 
the number of cadences in a piece is Ncadence, and we assign 
weight wi to the ith cadence, then   

cadence

Ncadence
i

N
w

FitCadence ∑−= 11
. Wit with the previous two fitness 

measures, the maximum value of FitCadence is equal to 1. 
In the present version of our system, we define the total fitness of 
a pulse set to be the sum of FitGrouper, FitAccent and 
FitCadence. That is, Fitness = FitGrouper + FitAccent + 
FitCadence, with maximum value equal to 3. 

4.  EVOLUTION PROCEDURE 
It this section we introduce the procedure to evolve suitable pulse 
sets from scratch. 

4.1 Genome representation of a pulse set 
A pulse set is represented by a long string of real numbers in the 
same order as shown in Table 1. In this string, we separate lines 
with “;” and insert “,” between elements in the same line. This 
makes it convenient to access and operate on parameters of 
different hierarchical levels. An additional number, either 0 or 1, 
is added at the end of an individual pulse set. This is used to 
indicate one of the possible two ways of applying a crossover 
operation, which will be clarified later. 

As an example, the pulse set in Table 1 is represented as follows 
(for the sake of clarity, we omitted Level 2 and Level 1); the 
additional number at the end of the string is equal to 0: 
8;4,4,3;0.339,0.762,0.953,0.319;73,93,66,124; … ;0 

4.2 Initialization of the first generation  
The individual pulse sets of the first generation are randomly 
generated. For the moment, we have established that all pulse sets 
have 3 levels. All other pulse set values are randomly generated, 
including:  
(1) The length of quickest note 
(2) The number of elements in each hierarchical level  
(3) Amplitude and duration values for each element in every level 
(4) The additional number at the end of the string (for selecting 
the crossover operation) 

4.3 Evolution algorithm 
For every generation, each pulse set is used to modulate the flat 
MIDI file, as described in section 2, and a fitness value is 
calculated according to the definition of fitness functions 
introduced in section 3. Thus, we obtain an array of values 
Fit0=f1,f2,. . . ,fn, where fi is the fitness value of the ith individual 
pulse set. The offspring pulse sets for the next generation are 
created on the basis of this fitness array. The procedure is as 
follows: 
(1) Calculate the fitness values of the current generation P0  
(2) Select parent candidates to compose of population P01 
(3) Operate mutation on P01 and get population P02 
(4) Operate crossover on pairs of pulse sets in P02 to get 
population P03 
(5) Rank the fitness values of Generation P0 and P03 and the best 
half become generation P1 
(6) Repeat the steps from (1) to (5) until completing a preset 
number of generations. 

4.4 Genetic operations 
In this section we explain the three genetic operations used in the 
evolution procedure: selection, mutation and crossover, 
respectively. 

4.4.1 Selection 
Based on Tobias Blickle’s [1] comparative study of various 
widely used selection operators in GA (such as, tournament, 
linear and exponential rankings, and proportional), we opted for 
using exponential ranking. This is because we wish to keep a 
certain degree of diversity in the evolutionary process and 
exponential ranking has proved to work well for this purpose. The 
pseudo-code of our exponential ranking selection is as follows:  

Exponential-ranking(c, J1, … , Jn) 

J←sorted population J according to fitness (first is the worst) 
S0←0 
For i←1 to N do 
si←Si-1 + pi 

Do 



For i←1 to N do 
r←random[0,sN] 
Ji←Jk such that si-1 ≤ r < sk 

Do 
Return 

Here, the value of c is randomly generated every generation from 
0.75 to 1. 

  

4.4.2 Mutation 
Considering the hierarchical property of a pulse set, we have 
employed four different ways for operating mutation on a single 
pulse set. Given a pulse set, Figure 3 shows examples of how each 
of the following mutation schemes work: Ma, Mb, Mc and Md.  
Ma: Randomly modify every duration or amplitude values in the 
pulse set. The range of changes for amplitude is [-0.1, 0.1], and 
for duration is [-5, 5].  
Mb: Append new duration and amplitude wraps or delete existing 
wraps from the end of the string. The number of added or 
removed elements is defined randomly, with the condition that the 
resulting pulse set is a valid pulse set. Also, if new elements are 
added, they are generated randomly. The length of the quickest 
note in the pulse set may be changed in this mutation, as we 
generate a new value for it randomly.  
Mc: Swap the order of elements in the same level of the pulse set 
randomly, but keep the duration and amplitude wraps. 
Md: Swap the order of hierarchical levels in the pulse set 
randomly.  

 
Figure 3. Examples of mutation schemes. 

An integer between 1 and 4 is generated randomly in each 
generation. This number defines which mutation methods can be 
used. For example, if we obtain 2, then only the first two mutation 
methods (Ma and Mb) are used in the respective generation. 
Then, whether to perform Ma or Mb to an individual pulse set is 
also decided randomly.  

4.4.3  Crossover 
To maintain the evolved parameters in hierarchical levels, we 
only allow for segmentation and crossover at the positions of 
complete hierarchical levels. Therefore, crossover enables two 
parents pulse sets to exchange some of their component levels. 
For example, let us consider the crossing over of two pulse sets: 
Px and Py. They can be respectively represented as X1X2X3x and 
Y1Y2Y3y, where Xn or Yn refers to the nth level of Px or Py, 

including duration and amplitude parameters. The variable x or y 
represents the number at the end of Px or Py, which can value 
either 0 or 1. 

Here we use the value of x-y (which can be 0, 1, or -1) to decide 
the way in which to perform crossover with Px and Py. This 
includes the choice of one-point crossover or two-point crossover, 
as well as which levels of the parent pulse sets the crossover will 
operate on. Possible crossovers are shown in Table 2. If x equals 
to y through crossover, then Px and Py exchanges their middle 
level, keeping all other information unchanged. If x=0 and y=1, 
then Px and Py exchange their lowest level along with the last 
number. Otherwise, if x=1 and y=0, then the highest level of Px 
and Py are crossed over. 

Table 3. Crossover scheme. 

    y   
x       0 1 

0 X1Y2X3x Y1X2Y3y  X1X2Y3y Y1Y2X3x 
1 X1Y2Y3y Y1X2X3x X1Y2X3x Y1X2Y3y 

5.  DEMONSTRATION 
As a demonstration, we present an example with the melody of 
Robert Schumann’s Träumerei. Figure 4 shows the structural 
analysis used for calculating the fitness value, including grouping 
structure, metrical analysis and harmonic progression. Group 
boundaries are noted by  “xx”, vertically positioned under the 
staves at segmenting positions. The numbers at the bottom of the 
notes correspond to accent information (from metrical analysis). 
The chord names above the staves indicate chord progressions. 

 
Figure 4. The soprano part of Robert Schumann’s Träumerei 
and its structural analysis. 
  



 
Figure 5. The best fitness value of 35 runs. 

The results discussed below were generated by running the 
evolution procedure 35 times. In each run, 100 individual pulse 
sets are randomly generated for the first generation, and then we 
let them evolve for 100 generations.  
For each run, we have recorded for every each generation: a) 
every pulse set’s fitness values including FitGrouper, FitAccent, 
FitCadence and the total fitness (i.e., the sum of the three) and b) 
the best pulse set. Figure 5 depicts the final best fitness values that 
we recorded from all runs; that is, these are the best fitness values 
of generation number 100 for each of the 35 runs. As shown in 
Figure 5, “excellent” pulse sets whose fitness values reached 3.0 
have evolved in the 4th, 6th, 15th, 23rd and 28th runs. This does not 
necessarily mean that each of these runs produced only one 
“excellent” pulse set each.  In fact, each run produced more than 
one. Although most of these “excellent” pulse sets may share 
identical configurations (which is a pulse set’s basic structure 
decided by the first two lines of its representation), they always 
have different duration and amplitude parameters, resulting in 
different performance profiles. For example, the system evolved 
two “excellent” pulse sets with two different configurations in the 
15th run. Those “excellent” pulse sets from different runs are 
obviously different from each other. We list some examples in 
Table 4: two pulse sets evolved in the 4th run and two evolved in 
the 15th run.  

Table 4. Example of “excellent” pulse set. 

Run4_1 Run15_1 
8 
8 2 2 
1.464 0.767 0.925 0.15 1.262 0.622 1.025 0.388 
97 86 116 107 123 106 60 113 
1.046 1.004 
95 115 
1.282 1.331 
118 121 

16 
4 4 2 
1.382 0.573 0.676 0.109 
125 116 100 80 
1.369 0.875 1.107 0.883 
116 115 109 80 
1.133 1.116 
115 122 

Run4_2 Run15_2 
8 
8 2 2 
1.478 0.582 1.036 0.344 1.301 0.305 1.022 0.606 
101 84 121 101 123 113 54 101 
1.057 1.05 
100 115 
1.393 1.348 
124 121 

16 
4 4 3 
1.418 0.598 0.525 0.232 
122 120 102 90 
1.336 0.853 1.087 0.87 
116 123 111 88 
1.154 1.113 1.096 
118 122 110 

From Table 4 we can infer that both pulse sets evolved in Run 4 
have a repeated deviation pattern that consists of 
eighth_note×8×2×2=16 beats, which corresponds to the length of 
4 bars. The other two pulse sets evolved in Run 15 have different 
configurations: Run 15_1 is for a 2-bar period 
(sixteenth_note×4×4×2=8 beats) and Run 15_2 is for a 3-bar 

period (sixteenth_note×4×4×3=12 beats). Figure 6 depicts their 
deviation pattern in 8 beats (2 bars). 

At present, we judge if a pulse set is suitable for the piece mainly 
depending on how well they fulfill the devised rules for the fitness 
function. This can be done by checking whether the important 
notes’ deviations correspond to those described in the rules. Here 
we give a brief analysis taking the examples in Figure 6. Firstly, 
we can list the group boundaries in the piece based on the score in 
Figure 4. They are the notes at the 10th, 18th, 26th, 37th beat and so 
on, always taking more than one beat. It is not hard to find out 
from Figure 6.a that each of these notes’ duration (adding all the 
beats occupied by each note) deviates mostly compared with its 
two neighbor notes. In this way, it is fair to say that both Rule 1 
and Rule 2 have been satisfied because all notes were lengthened. 
Secondly, for Rule 3, as it is the only rule affecting notes’ 
amplitude in our present system, we can see in Figure 6.b that all 
those “excellent” pulse sets follow identical amplitude deviation 
patterns, which match the accentuation information shown in the 
score. Finally in terms of Rule 4, there are several cadences such 
as V→I, IV→ I in this piece. We have checked that in most of the 
cases, both groups of notes composing the two chords of a 
cadence were lengthened. Other violations might have occurred 
because the concurrent effect of Rule 1 and Rule 2. 

 
Figure 6. Examples of deviation pattern by evolved pulse sets. 

It starts from the 4th beat because the piece actually begins 
with an upbeat at the 4th beat. 

 
In another analysis, we have drawn four curves for each run, for 
the values of FitGoruper, FitAccent, FitCadence and the total 
fitness, respectively, in order to follow the development of fitness 
values through 100 generations. This was done according to the 
corresponding data of the best pulse set in each generation. Figure 
7 shows the geometric means of these 35 groups of curves 
accordingly. These fitness curves show how the best pulse sets 
changed through the generations. We can observe that FitGrouper 
and FitCadence, which are fitness components defined as 
penalties for breaking the rules, have always played a dominant 
role in the beginning of the evolution. It is also possible to 
observe that after both of them have reached the maximum value 
1, the configuration of the best pulse set in the following 



generations had hardly changed. During this sustain period, the 
best pulse set gradually spreads over the population, which 
indicates convergence, even though modifications on the duration 
or amplitude parameters kept taking place. Although this is a 
dominant development, it is not absolute because there still is the 
possibility that some exceptionally good configuration had 
emerged; a good example of this are the pulse sets in the 15th run.  

We also have done some other experiments to observe the effects 
of mutation on the best fitness value that pulse sets can have. For 
example, by adding the step to randomly generate a new value for 
the quickest note of every mutation scheme, we found that it is 
hard to evolve pulse sets with fitness value as high as 3.  
The mutation scheme Ma is always performed in the present 
version of the system. Although this has been decided on purpose, 
it would be interesting to observe what happens if we change the 
order of the mutation schemes.  
 

 
Figure 7. Fitness trace. This is achieve by averaging the fitness 

value of the evolved best pulse set in the same generation 
across 35 runs 

 

6. CONCLUDING REMARKS 
In this paper we introduced a novel application of GA: to evolve 
music performance. GA evolves suitable pulse sets for musical 
performance using fitness rules derived from the structure of the 
piece to be performed. Furthermore, the “excellent” pulse sets 
evolved by the GA, no matter whether they were from the same 
run or not, have shown diversity and also commonality. This 
could be observed both objectively (by comparing the figures of 
deviation patterns by different pulse sets) and subjectively (by 
listening to the “interpreted” MIDI files).  
When listening to pieces performed with the evolved pulse sets, 
we can perceive the expressive dynamics of the piece, mainly due 
to lengthening or shortening of related notes. However, we 
acknowledge that such subjective assessment of the results does 
not hold much scientific value. We are currently developing 
methodology to validate the evolved pulse sets in comparison 
with human performanced. The study of Bruno Repp [5] is a very 
helpful resource for this purpose.  
We are currently testing the systems with different settings and 
variations with the objectives of gaining a better understanding of 

its behavior and fine-tuning it for the next stage of our research 
with multiple interactive agents. Other ongoing work includes: 
(1) We are taking into account performance principles associated 
to or determined by melody. Melodic information will improve 
the grouping and accentuation analysis. 
(2) We are implementing a mechanism to vary the number of 
hierarchical levels in order to render the model more robust when 
it encounters more complex music structures. We feel that 
sometimes the model would benefit from being able to cope with 
more hierarchical levels when evolving pulse sets for pieces of 
higher complexity than the pieces we have tested so far.   

(3) We are devising a new way to compute the fitness function, as 
a weighted sum of the fitness values for different performance 
principles. We are interested in letting these weights to evolve 
with the pulse sets. 
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