
HIGHER-ORDER CONSTRAINT APPLICATORS FOR MUSIC
CONSTRAINT PROGRAMMING

Torsten Anders and Eduardo R. Miranda
Interdisciplinary Centre for Computer Music Research

University of Plymouth
{torsten.anders|eduardo.miranda}@plymouth.ac.uk

ABSTRACT

This paper studies how constraints are applied to the
score in a musical constraint satisfaction problem (CSP).
How can we control which variable sets in the score are
affected by a given constraint? Our overall objective is to
produce a highly generic music constraint system, where
users can define a wide range of musical CSPs, including
rhythmic, harmonic, melodic and contrapuntal problems.
Existing systems provide constraint application mecha-
nisms which are convenient for specific cases, but lack
generality and cannot be extended by users. As a result,
complex sets of variables are hard to constrain in these
systems. For example, constraining notes from different
voices in a polyphonic setting (e.g., with harmonic con-
straints) is inconvenient or even impossible in most sys-
tems.

We propose an approach which combines convenience
with full user control: higher-order constraint applicators.
A constraint is a first-class function, while a constraint
applicator is a higher-order function which traverses the
score in order to apply a given constraint to variable sets.
This text presents constraint applicators suitable for a many
musical CSPs, and reproduces important mechanisms of
existing systems. Most importantly, users can define their
own constraint applicators with this approach.

1. INTRODUCTION

Constraint programming has often been used for making
computational models of music theories and composition.
Many compositional tasks have been addressed by con-
straint programming successfully. Constraint-based har-
monisation systems are surveyed in [14]. Other examples
include purely rhythmical tasks [18], Fuxian counterpoint
[19], Ligeti-like textures [10, 5], and instrument-specific
writing [10].

A constraint satisfaction problem (CSP) consists of a
set of variables and mathematical relations between these
variables which are called constraints. Variables have a
domain, that is a set of values they may take in a solution.
In most systems, the domain is a finite set (e.g., a finite
set of integers). A CSP usually presents a combinatorial
problem. A constraint solver finds one or more solutions
for the problem. A solution determines each variable to a
domain value which is consistent with all its constraints.

We aim at producing a highly generic music constraint
system where users can define a wide range of musical
CSPs, including rhythmic, harmonic, melodic and contra-
puntal problems. Several music constraint systems have
been proposed which allow users to define their own mu-
sical CSP. However, these systems are often designed for
specific problem classes (e.g., harmony) to the detriment
of others. The bias of these systems is also reflected by
their constraint application mechanisms, which are con-
venient but restrictive. We therefore propose an constraint
application approach which is both convenient and generic.
It is implemented in our system Strasheela [3].

2. EXISTING CONSTRAINT APPLICATORS AND
THEIR LIMITATIONS

Many music constraint systems have been proposed. Two
seminal systems are PWConstraints [9] and Situation [17].
Carla [6] is a pioneering system. Further examples in-
clude the aggregation of the music representation MusES
with the constraint system BackTalk [13], OMRC (defined
on top of PWConstraints) [18], Arno [2], and OMClouds
[20].

Each system provides three components, which are es-
sential for a music constraint system:

i) a music representation, where some aspects (e.g.,
note durations or pitches) can be variables (unknowns),

ii) a mechanism for defining constraints and for apply-
ing them to variables in the music representation,

iii) a constraint solver which finds a solution for all the
variables in the music representation.

Nevertheless, these systems differ widely in their mu-
sic representation, their constraint definition and appli-
cation, and their constraint solvers. As a result, differ-
ent systems are suitable for different CSPs. For example,
the system Situation is well suited for creating Messiaen-
like chord progressions, and the PWConstraints subsys-
tem Score-PMC supports complex polyphonic CSPs.

The present paper studies one of these three compo-
nents in more detail, namely how constraints are defined
and applied to the variables. Basically, in many exist-
ing systems users define constraints as Boolean expres-
sions. Such constraint definitions are convenient and fully
generic: arbitrarily complex constraints can be defined as
Boolean expressions.

However, the application of constraints to the variables
in the score is problematic. Users want to constrain di-
verse musical aspects (e.g., note durations and pitches,
pitch intervals, the metric positions of notes, the pitch
classes of chords and their roots etc.), possibly even in a
single constraint. Music constraint systems aim for mak-
ing CSPs convenient to define for the user, but at the same
time their constraint applications must somehow access
all the music representation variables expressing these di-
verse aspects.

Moreover, a musical constraint is often applied to sev-
eral score object sets at the same time. For example, a
classical counterpoint rule restricts which intervals can oc-
cur between two melody notes: the corresponding con-
straint would be applied to all pairs of consecutive notes
in all voices. The user of MusES plus BackTalk addresses
this case by a loop whose running index i is used to access
neighbouring note pairs in a melody as follows (cf. [16]).

myConstraint(nth(MyMelody , i),
nth(MyMelody , i + 1))

For complex rules, however, it becomes tedious to ex-
plicitly access all the variables involved. Existing systems
therefore often provide convenient mechanisms to apply
a constraint to several score object sets at the same time.
Yet these mechanisms are not generic: some object sets
are supported and others are not.

The difficulties of constraint application are discussed
below by outlining the application mechanisms of the two
seminal systems PWConstraints and Situation. Both sys-
tems where originally developed for PatchWork [9]. They
are meanwhile available in the PatchWork successor sys-
tems OpenMusic [4] or PWGL [11].

2.1. PWConstraints

PWConstraints [9, 17] proposes a pattern matching mech-
anism to apply constraints to the score. This mechanism
plays such an important role for the system that subsys-
tems were named accordingly (e.g., the basic subsystem is
PMC, which stands for pattern matching constraints). A
constraint consists of a pattern matching part and a body
(a Boolean expression). The body is applied to any set
of score objects which matches the corresponding pat-
tern. For example, the pattern [∗, X, Y] matches every two
neighbours of a sequence (the star matches zero or more
objects).

Figure 1 shows this pattern in a melody constraint: the
interval between any two consecutive pitches must not ex-
ceed a fifth (the interval is measured in semitones, a fifth
corresponds to 7). 1 Pattern matching variables are im-
plicitly bound to the matching values (e.g., the first two
pitches, then the second two pitches etc.). The free vari-
ables X and Y in the body (Figure 1, second line) use

1 In PWConstraints, rules are defined in Lisp – this text uses a math-
ematical notation instead.

this binding. Pattern matching is a convenient applica-
tion mechanism for sequential score object sets (e.g., a
sequence of melody notes).

[∗, X, Y] pattern matching expression
|X − Y | ≤ 7 constraint body

Figure 1. Melodic PMC constraint: the interval between
any two consecutive pitches must not exceed a fifth

However, polyphonic CSPs often include non-sequential
score object sets (e.g., simultaneous notes which stem from
different voices). PWConstraints’ polyphonic subsystem
Score-PMC therefore defines a polyphonic music repre-
sentation, whose accessor functions can be called within a
constraint definition. Score-PMC provides accessors to
the following score contexts: the sequence of melodic
notes, simultaneous notes, and the metric position of a
note. An extended pattern matching language simplifies
access to these contexts [12]. Instead of matching only in-
dividual notes of a single melody, new language keywords
support the matching of simultaneous note sets and note
sets at specific metric positions. Highly complex poly-
phonic CSPs can be expressed with Score-PMC.

Nevertheless, the designer of a composition system can-
not foresee all potential needs of its users, and therefore
composition systems tend to be highly user-extendable.
By contrast, Score-PMC users cannot introduce new pat-
tern matching language keywords to access further score
contexts (nor can they extend the music representation).
Moreover, pattern matching is axiomatically limited to what
can be expressed by a pattern: PWConstraints’ pattern
matching language cannot express every possible combi-
nation of elements in a sequence. For example, a single
PWConstraints pattern cannot express ‘any pair of neigh-
bouring variables in a sequence such that pairs do not
overlap’: for the sequence [a, b, c, d], there is no pattern
that only matches X = a ∧ Y = b and X = c ∧ Y = d.

2.2. Situation

Situation [17] was originally conceived in collaboration
between the composer Antoine Bonnet and the computer
scientist Camilo Rueda as a constraint system for solving
a range of harmonic CSPs. Its music representation still
reflects the history of the system: music is represented
as a sequence of composite score objects (e.g., chords, or
rhythmic motifs).

The constraint application mechanism of Situation is
tailored for this sequential music representation: constraints
are applied to sets of objects which are identified by their
numeric index in the sequence. For example, Situation
makes it easy to constrain the first and the fifths chord in
a chord sequence to contain specific pitches.

Any possible score object set can be expressed by an
index-based constraint application mechanism. Neverthe-
less, such mechanism is only convenient for a sequence

of score objects, but it is less suitable for constraining
complex score topologies (e.g., hierarchically structured
scores). For example, when constraining simultaneous
notes the user would need to know the sets of numeric
indices of simultaneous note sets.

3. INTRODUCING OUR APPROACH

As mentioned earlier, our objective is to produce a highly
generic music constraint system, in which the user can
define a wide range of musical CSPs, including rhyth-
mic, harmonic, melodic and contrapuntal problems. For
such a generic system, the existing constraint application
mechanisms are limiting. We therefore propose an ap-
proach which makes constraint application mechanisms
freely programmable.

Our approach is based on a well-understood formal-
ism: a constraint is a first-class function [1], and the ap-
plication of a constraint to the score is simply a function
application. In contrast to existing systems, this formalism
fully decouples the definition and the application of a con-
straint. That way, the user can freely apply each constraint
to arbitrary sets of score objects by any control structure.
Besides defining constraints, the user can also define con-
venient constraint application mechanisms. Such mecha-
nisms are implemented as a higher-order functions which
expects a constraint (i.e., another function) as argument.

In contrast to previous systems which provide a single
and limiting constraint application mechanism, the Stra-
sheela user can freely select from a range of predefined
constraint application mechanisms, including the index-
based application mechanism of Situation and the pattern-
matching-based mechanism of PWConstraints. In addi-
tion, Strasheela provides several mechanisms not supported
by previous systems (e.g., the application of a constraint
to any score object which meets some user-defined condi-
tion). Most importantly, the user can define new constraint
application mechanisms.

Music constraint programming always involves some
form of a music representation, and existing systems dif-
fer widely in their representation. The proposed constraint
application mechanism abstracts away from the actual mu-
sic representation format. In principle it can be used for
any representation format (e.g., a simple event list or a
MIDI-like representation). Nevertheless, a hierarchic rep-
resentation format is better suited for expressing more com-
plex music CSPs. For example, one may use a variant of
CHARM [7], or Smoke [15] for polyphonic CSPs. We use
the Strasheela music representation, which provides a rich
interface for accessing score information [3].

4. CONSTRAINTS ARE FIRST-CLASS
FUNCTIONS

For the rest of this paper, a constraint is a function which
returns a Boolean value. All arguments of a constraint
are either variables or score data which contain variables
(e.g., a note whose pitch is a variable). A variable has a

domain, that is a set of values it may take in a solution.
The Boolean value returned by a constraint is also a vari-
able, and its value can be constrained. If and only if a
constraint returns true, then do the constraint’s arguments
satisfy the restriction of this constraint.

4.1. Direct Constraint Application

A constraint can be applied directly to score objects. The
following example defines and applies the constraint con-
strainClimax. This constraint expects a list of melody
pitches Ps and a numeric index I and ensures that the I-th
element of Ps forms the peak of the melody. constrain-
Climax is applied directly to the list MelodyPitches , and
constrains its 7th element to the melodic peak.

let constrainClimax (Ps, I) := maxPs = nth(Ps, I)
in constrainClimax (MelodyPitches, 7)

The example returns the Boolean variable which is re-
turned by the constraint. This text adopts the convention
that a Boolean variable returned by a full example is im-
plicitly constrained to be true.

4.2. Applying a Constraint to Every Element in a List

Often we want to apply a constraint multiple times to dif-
ferent score object sets. Any control structure can be used
for this. For example, a constraint can be applied directly
to all notes in a voice by iterating through all these notes in
a loop. Instead, this text proposes the use of higher-order
functions for this purpose, because higher-order functions
can encapsulate any traversal of score objects, even if it is
far more complex than iteration. A constraint is a first-
class function; a constraint applicator is a higher-order
function which expects a constraint (i.e., a function) as
argument.

A programming technique very similar to iteration is
mapping. The higher-order function map applies a func-
tion to every element in a list, and returns a list with the
collected results. In Figure 2, map applies the unary con-
straint restrictPitch to every note of the alto voice. re-
strictPitch accesses the pitch of its note-argument, and
constrains its vocal range to g3–e5 (i.e., the MIDI key-
numbers 55–74).

let restrictPitch(N) := getPitch(N) ∈ {55, . . . , 76}
in

∧
map(getNotes(AltoVoice), restrictPitch)

Figure 2. Restrict the pitch domain of every note in the
alto voice to g3–d5

The function map returns a list of Boolean variables
and the operator

∧
returns the conjunction of all these

values. Again, the Boolean returned by the example is
implicitly constrained to be true, thus all restrictPitch ap-
plications in the example are constrained to return true.

4.3. Applying a Constraint to Neighbours in a List

The next example constrains multiple pairs of score ob-
jects. In a sequence of chords MyChords every two con-
secutive chords are constrained to share common pitches.
More specifically, the intersection of the pitch classes of
these chords must not be empty. The constraint applica-
tor is the function map2Neighbours , which expects a list
and a binary function as arguments. It applies the function
to every pair of neighbouring elements in the list. 2 Note
that this applicator is also often used for melodic rules, for
example, to constrain the interval between neighbouring
notes.

map2Neighbours(MyChords,
f : f(C1, C2) := (C1 ∩ C2) 6= ∅)

Figure 3. Constrains that neighbouring chords in
MyChords share common pitches

5. USER-DEFINED CONSTRAINT APPLICATORS

The examples above demonstrate how higher-order func-
tions are used as constraint applicators. This section shows
how such applicators are defined by the user. This ability
marks an important distinction between Strasheela and ex-
isting systems.

The higher-order function map (applied in Figure 2) is
widely known in functional programming, and its defini-
tion can be studied in many textbooks on functional pro-
gramming languages, such as [1]. Figure 4 defines the
higher-order function map2Neighbours which was used
in the example above (Figure 3). The definition is very
brief and consists of only a call to the function zip, a rela-
tive of the function map.

map2Neighbours(Xs, fn) :=
zip(butLast(Xs), tail(Xs), fn)

Figure 4. Constraint application functions can be defined
by the user: the definition of the higher-order function
map2Neighbours

The function zip expects two lists Xs and Ys and a
binary function fn , and collects the results of all calls
fn(xi, yi), where xi and yi are the i-th element of Xs
and Ys . For instance zip([1, 2, 3], [4, 3, 2],max) returns
[4, 3, 3]. The Common Lisp equivalent of zip is mapcar ,
which supports mapping over any number of lists. The
function map2Neighbours calls zip with three arguments,

2 This paper uses the where-notation [8] as syntactic sugar for an
anonymous function. For example, the function f serves the purpose
of an anonymous function in g(f where f(x) := x2) or shorter
g(f : f(x) := x2).

namely two sublists of its list argument Xs – one contain-
ing all but the last element and the other all but the first
element of Xs – plus the binary function argument fn .

Whereas map2Neighbours applies a binary constraint
to every pair of two neighbouring list elements, the gen-
eralised function mapNeighbours applies an n-ary func-
tion to every sublist of n neighbours in a list. The actual
definition of mapNeighbours is not shown for brevity.
mapNeighbours is useful, e.g., for applying melodic con-
straints which affect more than two neighbouring notes
(e.g., counterpoint rules like: “after a large skip follows a
step in the opposite direction”).

6. MODELLING EXISTING CONSTRAINT
APPLICATION MECHANISMS

This text argues that using higher-order constraint applica-
tors is more generic than the constraint application mech-
anisms of existing systems. To substantiate this claim, this
section reproduces the constraint application mechanisms
of Situation and PWConstraints as higher-order functions.
Please note that these systems do not support the applica-
tion mechanisms of each other.

6.1. Index-Based Constraint Application

Situation offers index-based constraint application mech-
anisms. The system introduces various constraint-specific
mini-languages for controlling the constraint application
to score objects. The present section describes two exam-
ples, which are then reproduced as higher-order functions.

One Situation mechanism applies a constraint to sin-
gle objects at specific positions in a sequence. The fol-
lowing example (Figure 5) constrains the 1st, 6th, 11th,
and 21st note of MyVoice to start a new phrase. The ex-
ample applies the constraint beginPhrase to these notes,
and beginPhrase constrains a note to follow a rest and ad-
ditionally constrains the note’s duration to at least a half
note. 3 The constraint applicator mapIndex reproduces
the Situation mechanism which applies a constraint to ev-
ery list element whose position is specified. This function
expects three arguments: a list (in Figure 5 the notes of
MyVoice), a specification of indices (1, 6, 11, and 21),
and a unary constraint (beginPhrase). mapIndex is de-
fined in [3].

The next example is particularly typical for Situation,
which has been developed originally for solving harmonic
CSPs. Figure 6 constrains chords at specific positions in a
chord sequence to contain pitches specified for these po-
sitions. The constraint requirePitches expects a chord
C and a list of pitches Ps: all elements of Ps must be
in getPitches(C). The constraint applicator mapIndex-
Args is similar to mapIndex , but the index declaration is
now a mini-language. The specification 1#[61, 65] de-
notes that the binary constraint requirePitches is called

3 The definition of followsRest depends on the music representa-
tion. Strasheela provides the note parameter offsetTime for expressing
a preceding rest.

let beginPhrase(N) :=
getDuration(N) ≥ halfNote

∧ followsRest(N)
indices := [1, 6, 11, 21]

in
∧

mapIndex (getNotes(MyVoice),
indices, beginPhrase)

Figure 5. Constrain the notes at position 1, 6, 11, and 21
in a given voice to start a new phrase: these notes have a
relatively long duration and follow a rest

let requirePitches(C,Ps) :=∧
map(Ps, f : f(P) := P ∈ getPitches(C))

decl := [1#[61, 65], 3#5#[60, 66], 6#[61, 65]]
in

∧
mapIndexArgs(MyChordSeq ,

decl , requirePitches)

Figure 6. Constrains chords at specific positions to con-
tain specific pitches

with the 1st chord and the list of pitches [61, 65]. The no-
tation 3#5#[60, 66] means all chords from position 3 to
5 are constrained with the pitch list [60, 66].

Our reproductions of Situation’s application mechanisms
are even more general then the original. In Situation, these
mechanisms are hard-wired to a specific constraint. As
higher-order functions, however, they can be used for ap-
plying any constraint. Also, the original mechanisms are
restricted to the sequential score topology of Situation. In-
stead, the mechanisms of this section can be used on any
score object set which can be represented as a sequence.
For example, Figure 5 applies a constraint to the notes of a
specific voice – which might be only one of several voices
in a polyphonic score. The score object set ‘notes of voice
MyVoice’ has no equivalent in Situation.

6.2. Constraint Application with a Pattern Matching
Language

This section reproduces the constraint application mecha-
nism of PWConstraints. In PWConstraints, a constraint is
applied to all object sets which match the pattern matching
expression of the constraint header (see above).

The present section defines a pattern matching language
which is similar to PWConstraints’, and which defines
three symbols. There are two place-holder symbols: ?
(question mark) matches exactly one sequence element,
and ∗ (star) matches zero or more elements. Instead of
PWConstraints’ pattern-matching variables, this language
provides the symbol x: every occurrence of a pattern-
matching variable in PWConstraints is substituted by the
unvarying symbol x here. The following example shows
an expression which matches any but the first pair of two
successive elements.

let restrictIntervals([P1, P2]) := |P1 − P2| ≤ 7
in

∧
mapPM (mapItems(MyVoice, getPitch),

[∗, x, x], restrictIntervals)

Figure 7. Constrains the interval between two consecutive
note pitches in MyVoice not to exceed a fifth

[?, ∗, x, x]

PWConstraints’ constraint application mechanism is re-
produced by the higher-order function mapPM . It ex-
pects three arguments: a list Xs (e.g., score objects), a pat-
tern matching expression pattern (using the syntax above),
and a unary constraint f which expects a list. The function
mapPM applies f to every sublist of Xs which matches
pattern . The example below results in the following two
function calls: [f([a, c]), f([a, d])].

let pattern := [x, ?, ∗, x,]
in mapPM ([a, b, c, d], pattern, f)

Figure 7 uses mapPM to apply a melodic constraint
to all pairs of consecutive note pitches in MyVoice. The
function mapPM is defined in [3].

Note that the approach proposed here is more general
than PWConstraints’ constraint application mechanism.
The function mapPM can be used on any data sequence.
For example, mapPM can apply constraints to any score
object sequence extracted from a highly nested music rep-
resentation. This is similar to the effect of the new pattern
matching keywords introduced by [12] discussed above,
but here the user is not limited to a set of predefined key-
words.

7. FURTHER EXAMPLES

7.1. Constraint Application to Selected Objects in a
Score Hierarchy

The constraint applicators introduced so far apply a con-
straint to specific elements (or element sets) in a sequence.
These mechanisms were implemented by higher-order func-
tions which traverse a sequence for applying a constraint.
Yet higher-order functions can define control structures
which traverse arbitrary data structures. The present sec-
tion proposes a technique which applies a constraint to all
score objects in a hierarchic music representation which
meet a user-defined condition.

Strasheela supports the hierarchic nesting of score ob-
jects in order to express, for example, which objects form
a voice, a motif or other object sets. Score objects which
hold other objects are called containers. Strasheela con-
tainers understand a method map which generalises the
map-function discussed above. This method traverses a
score hierarchy instead of a list. The method also sup-
ports optional arguments. For example, the argument test

expects a Boolean function: only objects for which the
test returns true are processed; other objects are skipped.

Figure 8 uses this method map for constraining any
instance of a specific motif a to have a single melodic
peak. These motifs can be nested arbitrarily deep in the
score. map applies the constraint hasUniquePeak to all
objects which are a container marked with the tag motif a.
This condition is defined by the test function f . The func-
tion hasThisInfo returns a Boolean whether a given ob-
ject is tagged with a specific symbol. The constraint has-
UniquePeak (Figure 9) constrains that the melodic peak
(i.e., the maximum pitch) occurs exactly once in all the
notes contained in its argument motif M . The constraint
once forces that MaxP occurs only once in Ps .

∧
map(MyScore, hasUniquePeak ,

test : f : f(X) := isContainer(X)
∧ hasThisInfo(X,motifa))

Figure 8. The constraint hasUniquePeak is applied to
every container marked as motifa

hasUniquePeak(M) :=
let Ps := map(M, getPitch, test : isNote)

MaxP = max (Ps)
in once(MaxP ,Ps)

Figure 9. In the list of all note pitches in the motif M , the
maximum pitch occurs exactly once

7.2. Nested Constraint Application

This section shows how more complex compositional rules
are defined by nesting constraint applicators. Note that the
constraint application mechanisms of Situation and PW-
Constraints do not support nesting. For example, in PW-
Constraints a pattern-matching expression can only occur
in the header of a constraint but not in the constraint body,
nor can a constraint call other constraints.

The following example applies a harmonic constraint
(Figure 10). All pairs of simultaneous notes in a poly-
phonic score are constrained to be consonant. The rhyth-
mical structure of the music can be arbitrarily complex.

∧
mapSimNotePairs(collect(MyScore, test : isNote),

isConsonant)

Figure 10. All pairs of simultaneous notes are constrained
to be consonant

The constraint applicator mapSimNotePairs traverses
all notes in the score and applies the constraint isCon-
sonant to all pairs of simultaneous notes. The method

collect is a relative of the method map discussed above:
collect traverses the score hierarchy below a given con-
tainer and selects all score objects for which a given Boolean
function returns true. In this example, collect returns all
notes in MyScore .

The constraint applicator mapSimNotePairs is realised
with two nested mappings (Figure 11). The outer map-
ping traverses Notes , a given list of note objects. For ev-
ery note N1, the function getHigherSimNotes returns all
notes simultaneous with N1 but which are situated in a
higher voice (discussed below). The inner mapping ap-
plies the given function myConstraint to every N1 in
Notes and any of its simultaneous notes.

mapSimNotePairs(Notes,myConstraint) :=
map(Notes,

f : f(N1) :=∧
map(getHigherSimNotes(N1),

g : g(N2) :=
myConstraint(N1, N2)))

Figure 11. The applicator mapSimNotePairs applies a
given constraint to all pairs of simultaneous notes

Figure 12 defines the function getHigherSimNotes . This
function exploits the fact that score objects in Strasheela’s
hierarchic music representation are bidirectionally linked:
every container has access to its contained score objects
(e.g., notes or other containers) and vice versa. That way,
any note object N1 can access the top-level container of
the score Top. The container Top then collects all score
objects which meet a given condition using the method
collect just introduced. The method collects all objects
in Top for which the Boolean function f returns true,
namely all notes which are situated in a higher voice than
N1 (the highest voice has the lowest voice position) and
which additionally are simultaneous with N1. N1 itself is
excluded from the result.

getHigherSimNotes(N1) :=
let Top := getTopLevelContainer(N1)

f(N2) := N1 6= N2

∧ isNote(N2)
∧ getVoicePos(N1) > getVoicePos(N2)
∧ isSimultaneous(N1, N2)

in collect(Top, test : f)

Figure 12. getHigherSimNotes returns all notes which
are simultaneous with a given note but which are from a
higher voice (with lower voice position)

The constraints isSimultaneous and isConsonant are
defined below. isSimultaneous returns true if two given

score objects overlap in score time. isConsonant con-
strains the interval between two notes N1 and N2 to either
a prime, a minor third, a major third, and so on up to a
fifth plus an octave.

isSimultaneous(X, Y) :=
getStartTime(X) < getEndTime(Y)

∧ getStartTime(Y) < getEndTime(X)

isConsonant(N1, N2) :=
let Interval ∈ {0, 3, 4, 7, 8, 9, 12, 15, 16, 19}
in Interval = |getPitch(N1)− getPitch(N2)|

This example can be refined easily to follow conven-
tional counterpoint rules where the interval between a bass
note and a higher note must not form a fourth (so 6

4 -chord
inversions are avoided), but a fourth can occur between
non-bass notes. Instead of traversing all notes at once
with mapSimNotePairs , the bass notes and the non-bass
notes would be addressed individually. The present con-
straint isConsonant would be applied to pairs with a bass
note, and a relaxed version (which additionally allows the
fourth) to non-bass note pairs.

This example accessed and constrained simultaneous
notes. However, the presented approach is much more
general. Any sets of score objects can be accessed and
constrained in this manner – as long as the music rep-
resentation provides enough information to isolate these
score object sets.

Note that complex constraint applications as presented
in this example are impossible in most existing systems.
Score-PMC allows for similar constraint applications in
principle, but only by using its music representation API
directly – its extended pattern matching language does
not cover this case. As a higher-order function, on the
other hand, users can define constraint applicators like
mapSimNotePairs themselves. Using the applicator is
convenient: users only specify a list of score objects and
the constraint – the applicators hides all the details.

8. RELATION TO THE STRASHEELA
IMPLEMENTATION

Strasheela provides higher-order constraint applicators as
proposed in this text, but the Strasheela implementation
differs from the approach described here. This text is
based on the notion of functions, because first-class func-
tions are well known in the computer music community,
and we can use the common mathematical notation for
them.

Strasheela, however, is based on the concurrent con-
straint programming model of its underlying programming
language Oz [21]. Oz provides first-class procedures for
abstraction (functions are a special case), and procedures
can run concurrently. For example, constraints are con-
current agents in Oz (constraint propagation happens con-
currently).

So, most conjunction constraints notated explicitly in
this text (e.g., the conjunction of all Booleans returned
by a map) are not required in Strasheela. The set of all
applied constraints (i.e., all concurrent propagators) are
implicitly conjunct. Still, constraints like conjunction or
implication are supported as well, as constraints can be
reified (the validity of a constraint can be constrained).

Several examples in this text perform complex oper-
ations when accessing score objects for constraint appli-
cation (e.g., a traversal of all score objects in the score).
Nevertheless, such constraint applications are not compu-
tationally expensive in Strasheela, because this access is
performed only once, and then the applied constraints run
concurrently.

The concurrent programming model of Oz blocks if
a thread misses required information. For example, the
function getHigherSimNotes (Figure 12) blocks until it
is know whether notes are simultaneous: the constraint
application is delayed until enough information is avail-
able. Consequently, the constraint applicators can exploit
information even if this information is not specified in the
CSP, but only found during the search process. For ex-
ample, Strasheela can constrain simultaneous notes to be
consonant even if the rhythmical structure of the music
is undetermined in the CSP definition. For an efficient
search process, however, the user must take care that the
constraint is not applied too late: in this case, the tempo-
ral parameters of a note should be determined before its
pitch so that the constraint isConsonant is applied and
can perform constraint propagation before the note’s pitch
is searched for.

9. DISCUSSION

Strasheela provides direct constraint application as well as
convenient constraint application mechanisms. The fact
that a Strasheela constraint is a first-class function allows
the user to program complex constraint application mech-
anisms as higher-order functions.

Experience with Strasheela shows that a CSP which
makes use of suitable higher-order functions is often more
concise than an equivalent CSP which applies constraints
directly (e.g., by explicit nested loops). Higher-order func-
tions can abstract away complex control structures which
implement mathematical concepts (e.g., the Cartesian prod-
uct), or knowledge about the music representation (e.g.,
implicit traversing of a score hierarchy).

Arbitrary control structures can be defined in terms of
higher-order functions, including the constraint applica-
tion mechanisms of previous systems. As a demonstra-
tion, index-based constraint application mechanisms of Sit-
uation and the pattern-matching based mechanism of PW-
Constraints have been reproduced in Strasheela.

Note that first-class functions can also express constraint
application mechanisms which cannot be adequately re-
produced by the mechanisms of Situation and PWCon-
straints. The mechanisms of both systems are highly suited
to applying a constraint to elements in a sequence, be-

cause these mechanisms rely on positional relations, such
as neighbouring elements. First-class functions, on the
other hand, can process arbitrary data structures, such as
trees or graphs, besides sequences. For example, a con-
straint can be applied to all score objects in a hierarchic
score representation for which some test function returns
true. Hence, a constraint application mechanism based on
the notion of higher-order functions is more generic than
the mechanisms of Situation and PWConstraints.

Because higher-order constraint applicators allow for a
concise and expressive CSP definition, other music con-
straint systems may be interested in adopting these mech-
anisms. Higher-order constraint applicators can be easily
reproduced in the combination of MusES and BackTalk.
This system is implemented in Smalltalk which provides
code blocks, and these are essentially first-class functions.
Realising higher-order constraint applicators in systems
which do not support direct access to their music repre-
sentation and its variables (i.e., Situation, PWConstraints
and OMClouds) would require internal changes to these
systems.

Acknowledgements
We thank Graham Percival for his comments on this text.

10. REFERENCES

[1] H. Abelson, G. J. Sussman, and J. Sussman. Struc-
ture and Interpretation of Computer Programs. MIT
Press, 1985.

[2] T. Anders. Arno: Constraints Programming in Com-
mon Music. In Proceedings of the 2000 Inter-
national Computer Music Conference, Berlin, Ger-
many, 2000.

[3] T. Anders. Composing Music by Composing Rules:
Design and Usage of a Generic Music Constraint
System. PhD thesis, School of Music & Sonic Arts,
Queen’s University Belfast, 2007.

[4] G. Assayag, C. Rueda, M. Laurson, C. Agon, and
O. Delerue. Computer Assisted Composition at IR-
CAM: From PatchWork to Open Music. Computer
Music Journal, 23(3), 1999.

[5] M. Chemillier and C. Truchet. Two Musical CSPs.
In Seventh International Conference on Principles
and Practice of Constraint Programming, Musical
Constraints Workshop, Paphos, Cyprus, 2001.

[6] F. Courtot. A Constraint Based Logic Program for
Generating Polyphonies. In Proceedings of the In-
ternational Computer Music Conference, Glasgow,
1990.

[7] M. Harris, A. Smaill, and G. Wiggins. Representing
Music Symbolically. In IX Colloquio di Informatica
Musicale, Genoa, Italy, 1991.

[8] P. J. Landin. The Next 700 Programming Languages.
Communications of the ACM, 9(3), 1966.

[9] M. Laurson. PATCHWORK: A Visual Programming
Language and some Musical Applications. PhD the-
sis, Sibelius Academy, Helsinki, 1996.

[10] M. Laurson and M. Kuuskankare. A Constraint
Based Approach to Musical Textures and Instru-
mental Writing. In Seventh International Confer-
ence on Principles and Practice of Constraint Pro-
gramming, Musical Constraints Workshop, Paphos,
Cyprus, 2001.

[11] M. Laurson and M. Kuuskankare. PWGL: A Novel
Visual Language based on Common Lisp, CLOS and
OpenGL. In Proceedings of International Computer
Music Conference, Göteborg, Sweden, 2002.

[12] M. Laurson and M. Kuuskankare. Extensible
Constraint Syntax Through Score Accessors. In
Journées d’Informatique Musicale, Paris, 2005.

[13] F. Pachet and P. Roy. Mixing Constraints and Ob-
jects: a Case Study in Automatic Harmonization. In
I. Graham, B. Magnusson, and J.-M. Nerson, edi-
tors, Proceedings of TOOLS-Europe’95, Versailles,
France. Prentice-Hall, 1995.

[14] F. Pachet and P. Roy. Musical Harmonization with
Constraints: A Survey. Constraints Journal, 6(1),
2001.

[15] S. T. Pope. The Smoke Music Representation, De-
scription Language, and Interchange Format. In Pro-
ceedings of the International Computer Music Con-
ference, San Jose, 1992.

[16] P. Roy and F. Pachet. Reifying Constraint Satisfac-
tion in Smalltalk. Journal of Object-Oriented Pro-
gramming, 10(4), 1997.

[17] C. Rueda, M. Lindberg, M. Laurson, G. Block, and
G. Assayag. Integrating Constraint Programming in
Visual Musical Composition Languages. In ECAI 98
Workshop on Constraints for Artistic Applications,
Brighton, 1998.

[18] O. Sandred. Searching for a Rhythmical Language.
In PRISMA 01. EuresisEdizioni, Milano, 2003.

[19] W. Schottstaedt. Automatic Counterpoint. In M. V.
Mathews and J. R. Pierce, editors, Current Direc-
tions in Computer Music Research. The MIT Press,
1989.

[20] C. Truchet, G. Assayag, and P. Codognet. OM-
Clouds, a heuristic solver for musical constraints.
In MIC2003: The Fifth Metaheuristics International
Conference, Kyoto, Japan, 2003.

[21] P. van Roy and S. Haridi. Concepts, Techniques,
and Models of Computer Programming. MIT Press,
2004.

