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ABSTRACT 

This paper introduces a system that uses brainwaves, or 
EEG (electroencephalogram), information to compose 
and play music in real-time. The system composes music 
using generative grammars and transition rules 
controlled by means of information extracted from the 
EEG of the subject. The paper starts by noting the 
various attempts at the design of systems that make 
music from the EEG signals, followed by a short 
technical introduction to the EEG. The generative 
component of the system is inspired by the work of 
David Cope [7] on computer-replication of a musical 
style by analysis of given musical examples. The paper 
concludes with a brief discussion on the contribution of 
our research for the development of assistive technology 
for physical disability. 

1. INTRODUCTION 

Human brainwaves were first measured in 1924 by Hans 
Berger [3]. Today, the EEG has become one of the most 
useful tools in the diagnosis of epilepsy and other 
neurological disorders. In the early 1970s, Jacques Vidal 
did the first tentative work towards a system to 
communicate with a computer with the EEG. The 
results of this work were published in 1973 in a paper 
entitled Toward Direct Brain-Computer Communication  
[21]. This field of research is known as Brain-Computer 
Interface (BCI) and there is a growing number of 
researchers worldwide working in this field. Many 
attempts followed with various degrees of success. In 
1990, Jonathan Wolpaw and colleagues developed a 
system to allow primitive control of a computer cursor 
by subjects with severe motor deficits [22]. For recent 
reports on BCI research please refer to the special issue 
of IEEE Transactions on Biomedical Engineering 
published in June 2004 (Vol. 51).  We are devoted to the 
development of BCI systems for musical applications 
(Brain-Computer Musical Interfaces or BCMI) and we 
pay special attention to the development of generative 
music techniques tailored for such systems. We are very 
interested in the possibility of using BCMI as assistive 
technology to enable people with severe physical 
disabilities to have the opportunity to make music. 

As early as 1934, a paper in the journal Brain had 
reported a method to listen to the EEG [1]. It is now 
generally accepted that it was composer Alvin Lucier, 
who composed the first musical piece using EEG in 
1965: Music for Solo Performer [13]. Pioneers such as 
Richard Teitelbaum [20], David Rosenboom [19] and a 
few others followed with a number of interesting 
systems and pieces. Back in 1975 David Rosenboom 
edited a remarkable book on the topic [18] and more 

recently Andrew Brouse published a comprehensive 
review on using brainwaves to produce music [6]. 

Our research builds on the work developed by these 
pioneers in a number of ways. Firstly, we are employing 
and developing more sophisticated analysis techniques 
to harness the EEG signal. Furthermore, we are 
developing new psychophysical experiments in order to 
gain a better understanding of the EEG components 
associated with musical cognition and methods to train 
subjects to generate such EEG components. Finally, we 
are developing generative techniques especially 
designed for musical composition and performance with 
a BCMI. This paper focuses on the first and the latter. 
More information on our psychophysical experiments 
can be found in [14, 15]. 

 

 
 

 Figure 1. Demonstration of the BCMI-Piano using 
 a Disklavier piano. 
 
Before we proceed, note that the BCI research 

community understands that a BCI system is a system 
that allows for the control of a machine by explicitly 
thinking the task(s) in question; e.g., control a robotic 
arm by thinking explicitly about moving an arm. This is 
an extremely difficult problem. The system presented in 
this paper does not address this type of explicit control. 
This would be even more difficult in the case of music. 
However, we are not interested in a system that plays a 
melody by thinking the melody itself. Rather, we are 
furnishing our systems with Artificial Intelligence in 
order to allow them make their own interpretation of the 
meaning of the EEG patterns. Such machine-
interpretations may not always be accurate or realistic, 
but this is exactly the type of man-machine interaction 
that we are addressing in our work. 

2. THE ELECTROENCEPHALOGRAM (EEG) 

Neural activity generates electric fields that can be 
recorded with electrodes attached on the scalp (Figure 
2): the electroencephalogram, or EEG. These electric 
fields are extremely faint, with amplitudes in the order of 
only a few microvolts. In order to be displayed and/or 



  
 
processed, these signals must be greatly amplified [16]. 
The EEG is measured as the voltage difference between 
two or more electrodes on the surface of the scalp, one of 
which is taken as a reference. The EEG expresses the 
overall activity of millions of neurons in the brain in 
terms of charge movement, but the electrodes can detect 
this only in the most superficial regions of the cerebral 
cortex. The EEG is a difficult signal to handle because it 
is filtered by the meninges (the membranes that separate 
the cortex from the skull), the skull and the scalp before 
it reaches the electrodes. Furthermore, the signals 
arriving at the electrodes are sums of signals arising 
from many possible sources, including artifacts like the 
heartbeat and eye blinks. 
 

 
Figure 2. Brainwaves can be detected with electrodes 
place on the scalp. 

There are a number of approaches to quantitative 
EEG analysis, such as power spectrum, spectral 
centroid, Hjorth, event-related potential (ERP) and 
correlation, to cite but five. A brief non-mathematical 
introduction to EEG power spectrum and Hjorth 
analyses is given below due to their relevance to the 
systems introduced in this paper. A discussion on other 
analysis techniques and how they have been used in 
neuroscience of music research can be found in [4, 10, 
11], to cite but three. 

 
Power spectrum analysis: is derived from techniques of 
Fourier analysis, such as the Discrete Fourier Transform 
(DFT). This is useful because the distribution of power 
in the spectrum of the EEG can reflect certain states of 
mind. For example, a spectrum with salient low-
frequency components can be associated with a state of 
drowsiness, whereas a spectrum with salient high-
frequency components could be associated with a state 
of alertness. There are five recognised frequency bands 
of EEG activity, also referred to as EEG rhythms, each 
of which is associated with specific mental states: delta, 
theta, alpha, low beta and high beta rhythms. There is, 
however, some controversy as to the exact frequency 
boundaries of these bands and the mental states with 
which they are associated.  
 
Hjorth analysis: is an interesting time-based method 
[9], which measures three attributes of the EEG: its 
activity, mobility and complexity. This method represents 
each time step (or window) using only these three 
attributes and this is done without conventional 
frequency domain description. The signal is measured 
for successive epochs (or windows) of one to several 

seconds. Two of the attributes are obtained from the first 
and second time derivatives of the amplitude fluctuations 
in the signal. The first derivative is the rate of change of 
the signal’s amplitude. At peaks and troughs the first 
derivative is zero. At other points it will be positive or 
negative depending on whether the amplitude is 
increasing or decreasing with time. The steeper the slope 
of the wave, the greater will be the amplitude of the first 
derivative. The second derivative is determined by 
taking the first derivative of the first derivative of the 
signal. Peaks and troughs in the first derivative, which 
correspond to points of greatest slope in the original 
signal, result in zero amplitude in the second derivative, 
and so forth. Activity is the variance of the amplitude 
fluctuations in the epoch. Mobility is calculated by 
taking the square root of the variance of the first 
derivative divided by the variance of the primary signal. 
Complexity is the ratio of the mobility of the first 
derivative of the signal to the mobility of the signal 
itself. A sine wave has a complexity equal to 1.  

There is no clear agreement as to what these 
measurements mean in terms of mental states. It is 
common sense to assume that the longer a subject 
remains focused on a specific mental task, the more 
stable is the signal, and therefore the lower is the 
variance of the amplitude fluctuation. However, this 
point questions the possible affects of fatigue, 
habituation and boredom, which we have not yet 
accounted for in our research. 

3. THE BCMI-PIANO SYSTEM 

The BCMI-Piano (Figure 1) falls into the category of 
BCI computer-oriented systems. These systems rely on 
the capacity of the users to learn to control specific 
aspects of their EEG, affording them the ability to exert 
some control over events in their environments. 
Examples have been shown where subjects learn how to 
steer their EEG to select letters for writing words on the 
computer screen [5]. However, the motivation for the 
BCMI-Piano departed from a slightly different angle 
from other BCI systems. We aimed for a system that 
would make music by guessing the meaning of the EEG 
of the subject rather than a system for explicit control of 
music by the subject. Learning to steer the system by 
means of biofeedback would be possible, but we did not 
investigate this possibility systematically yet. We 
acknowledge that the notion of “guessing the meaning 
of the EEG” here is simplistic, but it is nevertheless 
plausible: it is based on the assumption that 
physiological information can be associated with 
specific mental activities [2].  

The system is programmed to look for information 
in the EEG signal and match the findings with assigned 
generative musical processes corresponding to different 
musical styles. The BCI-Piano is composed of 2 main 
modules: analysis and music engine. 

The EEG is sensed with 7 pairs of gold EEG 
electrodes on the scalp, roughly forming a circle around 
the head. A discussion for the rationale of this 
configuration falls outside the scope of this paper. It 



  
 
suffices to say that we are not looking for signals 
emanating from specific cortical sites; rather, the idea is 
to sense the EEG over the whole surface of the cortex. 
The electrodes are plugged into a biosignal amplifier and 
a real-time acquisition system.  

 
The analysis module: performs power spectrum and 
Hjorth analyses in real-time. The analysis module 
generates two streams of control parameters: one stream 
contains information about the most prominent 
frequency band in the signal and is used by the music 
engine to generate the music. In the current version, the 
system activates rules for two different styles of music, 
depending on whether the EEG indicates salient low-
frequency or high-frequency components (or EEG 
rhythms). The other stream contains information about 
the complexity of the signal and is used by the music 
engine to control the tempo of the music (Figure 3). 
 

 
 

Figure 3. Spectral information is used to activate 
generative music rules to compose music on the fly and 
the signal complexity is used to control the tempo of 
the music. 

The music engine module: is a set of generative music 
rules, each of which produce a musical bar, or measure. 
Basically, the system works as follows: every time it has 
to produce a bar, it checks the power spectrum of the 
EEG at that moment and activates rules associated with 
the most prominent EEG rhythm in the signal. It can 
generate music that contains, for example, more 
Schumann-like elements when the spectrum of the 
subject’s EEG contains salient low-frequency 
components and more modern or jazzy elements when 
the subject the spectrum of EEG contains salient high-
frequency components. Example-based musical-
generation systems are often based on formalisms such as 
transition networks or Markov Chains to re-create the 
transition-logic of what-follows-what, either at the level 
of notes [12] or at the level of similar “vertical slices” of 
music [7, 8]. For example, David Cope uses such 
example-based musical-generation methods but adds 
phrase-structure rules, higher-level composition structure 
rules, and well-placed signatures, earmarks and 
unifications [7]. The act of recombining the building 
blocks of music material together with some typical 
patterns and structural methods has proved to have great 
musical potential. 

We have chosen to stick to a statistical predictor at 
the level of short vertical slices of music such as a bar or 
half-bar, where the predictive characteristics are 
determined by the chord (harmonic set of pitches, or 
pitch-class) and by the first melodic note following the 
melodic notes in those vertical slices of music. We 

added a simple method of generating short musical 
phrases with a beginning and an end that also allows for 
the real-time influence from a given EEG-signal. The 
system generates musical sequences by defining top-level 
structures of sentences and methods of generating 
similarity- or contrast-relationships between phrases. We 
are currently exploring other possibilities with extra 
constraints and transformations on music that will 
generate music with repeated similarities (such as David 
Cope's “unifications” [7]), and larger structures such as 
the generation of rondo's and variations, while still 
adhering in real-time to the demands of the EEG-signal. 

Figure 4 shows an example generated by our system 
with elements from the musical style of Robert 
Schumann and Ludwig van Beethoven. The former 
corresponds to alpha rhythms and the latter to beta 
rhythms; the user sets these associations arbitrarily 
beforehand. In this example the EEG would have jumped 
back and forth from bar to bar between the two EEG 
rhythms. The harmonic and melodic distances are quite 
large from bar to bar, but still they are the optimal 
choices in the set of chosen elements from the two 
composers. 

 
 

Figure 4. An example of a generated mixture of 
Robert Schumann and Ludwig van Beethoven. 

The system is initialised with a reference tempo (e.g., 
120 beats per minute), which is constantly modulated by 
the signal complexity analysis (i.e., Hjorth analysis). The 
music engine sends out MIDI information for 
performance; we implemented a demonstration using the 
Disklavier piano, manufactured by Yamaha. 

5. CONCLUSION: BCMI AS ASSISTIVE 
TECHNOLOGY AND FUTURE RESEARCH 

With this research we hope to open up many 
possibilities, as both a recreational device for people 
with disabilities and as an instrument for concert 
performance and composition. At present, access music 
tutors use gesture devices and adapted accessible 
technology to make this possible, which achieve 
excellent results with people with learning and physical 
disabilities. Although for people with severe physical 
disabilities, having complete control of the environment 



  
 
created for them by the facilitator can sometimes prove 
difficult. For many with disabilities, EEG signals could 
be the only option of control and sometimes with others 
be a more reliable one, due to the nature of their 
disability.  

To have greater control over this system, we are 
developing methods to train subjects to achieve specific 
EEG patterns to play the BCMI-Piano system. We have 
initial evidence that this can be made possible using a 
technique known as biofeedback. Biofeedback 
technology is used to treat and control a number of 
conditions; examples include migraine headaches and 
epilepsy. In addition it has been used for artistic 
expression through music, performance and visual art 
[18, 19].  

As yet, there has been little research into the area of 
training people with disabilities to control BCMI 
systems. The aim of our current research in this area is to 
create a methodology to train subjects to use the 
technology through the use of biofeedback.  

We acknowledge that there still remain a number of 
cumbersome problems to be resolved before we can 
realise our ultimate goal: an affordable, flexible and 
practically feasible BCMI. One of the key issues needing 
to be addressed is the problem of interpreting the 
meaning of the EEG. Although powerful mathematical 
tools for analysing the EEG already exist, we still lack a 
good understanding of their analytical semantics in 
relation to musical cognition. However, continual 
progress in the field of cognitive neuroscience [17] is 
improving this scenario substantially. Another aspect 
that needs to be developed is the non-ergonomic nature 
of the electrode technology for sensing the EEG.  
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