Neural Correlates of Tonality in Music
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Abstract

The paper presents fMRI results from experiments of subjiéstening
to musical stimuli. In this study we examine the neural dates of
tonality by presenting a set of stimuli with key changes dfedént
distances along the circle-of-fifths, along with atonal tcoinstimuli.
Results are presented using both conventional statigticalsis across
subjects, together with experiments using support vectmiimes. We
find that a number of areas are significantly more active foaltthan
atonal processing, and further that the response is signtficstronger
in some of these areas for more distant key changes.

1 Introduction

Music has attracted a wide spread of research into how andieipgople create, perform
and listen to music. In the following paper we focus on thelgtaf tonality, which is a
major topic in music theory [1] and music psychology [2],estigating tonal processing,
and in particular the effect of distance along the circldiis [3] for key changes within



the stimuli. Tonal melodies are complex structures, anditivg processing reflects this
structure [4]. Analysing the neural activity associatethva melody is therefore particu-
larly useful for determining which areas control highererdequence processing [5].

The present study seeks to explore the effects of tonalitiyerbrain. Previous work in the
area of tonality [6] made strong claims about the possyhiiitdentifying a tonal map in the

rostromedial prefrontal cortex. These results have noh beproduced to our knowledge.
We set ourselves a somewhat complementary goal of testiethehdifferences between
tonal and atonal stimuli can be detected, as well as diftesgporrelating with the distance
along the circle-of-fifths as the stimuli change keys.

In addition to being a study on specific aspects of music, weabso interested in testing
different forms of analysis. In general machine learninghuds have been recently ap-
plied to fMRI analysis [7, 8, 9, 10, 11, 12, 13, 14, 15] to asalyhe relationship between
stimulus categories and fMRI responses. Higher order twgréffects are known to be

difficult to detect in fMRI due to the presence of confounds #ime nonlinear mapping

between cognition and BOLD response, so fMRI data from a entasik that focuses on

such effects provides a significant challenge to machimailegualgorithms. As well as the

conventional General Linear Model (GLM) analysis, therefave tested a machine learn-
ing approach (support vector machine) in the analysis ofiata, in order to see whether
or not it was able to find meaningful patterns in this data.

This paper is structured as follows; Section 2 discussesrmidwerial and methods used
in our experiment. This contains an elaboration on the exyart protocol, as well as

providing basic information as to the participating subjeand acquisition of data. Section
2 ends with a description of the pre-processing appliededMRI data. In Section 3, we

give the results for the conventional (GLM) analysis ana s the results of the machine
learning (SVM) approach. Finally, Section 4 brings the pdpe close with a discussion

on the work conducted and the analysis arising from it.

2 Materials and Methods

2.1 Experimental Design and Stimuli

The experiment was concerned with the tonality of short nalsequences. In particular,
the focus of interest was the effect of relative tonalitye(tielationship between musical
keys). Each stimulus consisted of 16 isochronous eventisigaS00ms each (with each
stimulus therefore lastings), with no gaps in between; each event consisted of four si-
multaneous tones forming a chord recognised in Western toasic theory. The stimuli
were created using the MIDI protocol, and rendered into @fitis using a piano sound
patch from the Roland Sound Canasligital samples. The stimuli were divided be-
tween tonal stimuli, which were designed to create a cleasesef key, and atonal stimuli
that were designed to create no clear sense of key, by theirgdsf the chords, which
were nevertheless equally consonant at the individualccheyel in both types of stim-
uli. In order to verify this sense of key, the MIDI toolbox [L&vas used to test the
stimuli with the psychologically-derived Krumhansl-Kégskey-finding algorithm [17],
with u7 = 0.93931 andor = 0.038562 for the tonal stimuli, and:4 = 0.65857 and
o4 = 0.13196 for the atonal stimuli, wherg is the mean of the strongest key certainty rat-
ings (ranging between 0 and 1), andk the standard deviation of these ratings. Altogether,
eight different tonal stimuli were created, and twentyffatonal stimuli. For a single run,
stimuli were ordered into twenty-four groups of three stiimtth no gaps between stimuli
or groups. The first stimulus in each group was always a tdiralikis presented in the
home key of C major, the second was always a tonal stimuldscthdd either be in the
distant key of F# major (first condition), the closely-reldkey of G major (second condi-
tion), or the same key of C-major (third condition). The t¢hatimulus in each group was
always an atonal stimulus (fourth condition), which alssetethe listener’s sense of key.



As a result of the contiguity of groups, the first stimulus &tle group followed the atonal
stimulus in the previous group (except for the initial griywghich was therefore defined as
the initial (fifth) condition. The first and second conditiotinerefore define changes from
one key to another (distant or close). The third conditiofinds no change of key. The
fourth condition defines no key present, and the fifth coaditiefines a change of no key
back to a sense of key. The stimuli were ordered such thabrdll tstimuli were used an
equal number of times, and conditions appeared in all pextiouis equally in order to con-
trol for order effects. The behavioural task for subjects weaclick the left mouse button
when they heard a change from one key to another (conditiomaind two), and right-click
the mouse button when they heard a change from no key to a &adgifon five), in order
to concentrate their attention on the tonal structure ofstiraulus stream. The task was
explained as clicking in response to a change (since noriansiwould not know what
is meant by a key), and a short training session prior to sngnmas used to ensure that
subjects understood which type of change was being reféote@ihe behavioural results
indicated that subjects clearly understood and were aldarty out the task.

2.2 Subjects

We tested sixteen right-handed subjects with normal hgifemale,” male; agd 9—31)
none of whom had received any formal musical education. éthjects gave written in-
formed consent to the study, which was approved by the EGoesmittee of the University
of Magdeburg.

2.3 Data Acquisition

Functional magnetic resonance imaging data was acquirgdeat eibniz Institute of
Neurobiology (Magdeburg, Germany) on a Siemens Trio (Eean GermanypT MRI
scanner equipped with an eight channel head coil. Fundtimiames were collected
using echo planar imaging (EPI) with the following param&t&d E=30ms; TR=2000ms;
interslice time: 62ms; slice thickness:3mm; slice gap thickness:0.3mm; inplane
resolution: 3mnx3mm (giving 3mmx3mmx3mm cubic isovoxels); number of slices:
32; FA: 80°; FOV: 192mmx 192mm; matrix size64 x 64. Stimulus delivery and scanning
coordination was controlled with the Presentaffosoftware (Neurobehavioural Systems
Inc, Albany, USA) using a custom-written script. The pevedi scanner noise was
attenuated by earplugg4 dB) and ear muffs20 — 30 dB) in which MRI compatible
electrodynamic headphones were integrated [18]. The kslrof the stimuli was
individually adjusted to a comfortable level. Each stinsuhlock lasted 8s (4 volumes)
and was immediately followed by the next stimulus block. Tewperimental runs were
carried out during the session, with 20s (10 volumes) be&aeh run, and after the
final run, to provide a baseline condition. Altogether, eaelsion therefore consisted
of 606 functional volumes, as well as anatomical data cttiacand dummy runs for
scanner alignment. Subjects were also given an initial-fe@npractice period on stim-
uli not used in the functional data collection in order toumeghat they understood the task.

2.4 Pre-Processing

Functional data in the original space were co-registerdd iviplane anatomical data and
preprocessed witBD mation correction using trilinear interpolation, sliceas time cor-
rection using sinc interpolation, linear trend removagpass temporal filtering with a
cut-off of 3 cycles throughout the time course, equivalen.t®236593Hz, and Gaussian
spatial smoothing with a FWHM of 4mm. A correlation analysiasaperformed in the
original data space following pre-processing to verifyattectiveness. They were then
co-registered with a high-quality anatomical data set aadsformed into AC-PC space
using using cubic spline interpolation and subsequentty Talairach space with trilinear



interpolation. These data were then used separately forthetconventional analysis and
the machine learning analysis.

3 Experimental Results

3.1 Conventional fMRI Analysis

The conventional analysis was performed with a GeneraldriModel (GLM) using Brain-
Voyager QX© (Brain Innovation B.V.,Maastricht). Second-level (grd@malyses for all
the results reported below were carried out using a two-gtepedure. A grey-matter
cortical mask was applied and a fixed effects analysis witixels with global Bonfer-
roni correction carried out to identify areas that are iwgied in the processing of tonal
sequences for the group (and by inference for at least a pgiopof the underlying popu-
lation). Only clusters that were strongly significant aftes stringent correction procedure
(p<0.05, corrected) were considered further. A more speeidlisnality cortical mask was
created based on these clusters (separately for each GLtvhasbof interest), and a ran-
dom effects analysis (now also including between-subjeatience) carried out, and only
those voxels that survived €0.05, corrected at the mask level for % False discovery
rate) were considered further. Finally, a minimum clusiee f 500 voxels was imposed
in order to allow only large activations. All active clustesver the baseline after this pro-
cedure are reported in the results below. The purpose odgiisach is to identify regions
involved in tonality within the group (fixed effects analgsiand to determine the level of
inference possible to the underlying population (randof@cts analysis), with a stringent
multiple comparisons correction procedure and cluster Igizit imposed in order to avoid
artefacts and susceptibility errors.

3.1.1 Tonal vs Atonal

Location Tal X | TalY | Tal Z | Cluster Size
Right Precentral Gyrus (BA4) | 49 -10 45 1872

Left Medial Frontal Gyrus (BA 6)| -1 -4 58 742

Left Precentral Gyrus (BA 4) -49 -10 42 1257

Table 1: Anatomical results of a GLM analysis contrastingaland atonal conditions.

Condition | 49-1045| -1-458 | -49-10 42
distant 0.739278| 1.2853 | 1.06331
close 0.785971| 1.23277| 1.18109
same 0.864002| 1.3916 | 1.25538
none 0.694907| 1.1751 | 1.0339
initial 0.914343| 1.35245| 1.26462

Table 2: GLM beta statistics for each experimental condifar the three active clusters,
identified here by their Talairach coordinates.

The contrast examined here was for the initial tonal stimsiithe atonal stimuli, in order
to avoid any confounds related to key changes. The resuitbeaeen in table 1. There
are three major active clusters. It is well established lfatrontal regions are involved
in hierarchical pattern processing, including music pssagg [5], and is necessary for the
cognition of tonality, so it is not surprising to find actiiat in the left medial frontal gyrus
(BAG6; the supplementary motor area). A clue to the specifie o this area in tonality
processing comes from the strong bilateral activation efptecentral gyrus (see figure 1).



One possibility is that this is simply motor activity reldtéo the mouse click showing a
change from no key to key, with no mouse click required wheringpfrom tonal to atonal
stimuli. However, an analysis with the contrast same (atmi3) vs atonal (condition
5) (neither of which requires a mouse click) was performed] #he same results were
found, so motor activity is not an adequate explanation.tiEine regression beta statistics
(table 2) show clearly that this area has a strong assogiafith processing stable tonal
stimuli. There is a long tradition of musicians and musicghgfogists investigating the
link between music and motion [19], and with these threevadtiusters all involved in
motor processing, we have found what we believe is evidemrahik link at a neural level.

Figure 1: Bilateral activation of the precentral gyrus fomal vs atonal stimuli. All active
clusters preferentially favour tonal stimuli.

3.1.2 Key Changes

Location Tal X | TalY | Tal Z | Cluster Size
Right Transverse Temporal Gyrus (BA 4151 -17 10 1023

Right Insula (BA 13) 36 17 13 948

Right Lentiform Nucleus 24 -1 1 750

Right Caudate 14 -4 22 1443

Left Anterior Cingulate (BA 32) -1 41 11 2574

Left Cingulate Gyrus (BA 24) 0 -16 35 786

Left Superior Frontal Gyrus (BA 8) -12 50 36 2241

Left Transverse Temporal Gyrus (BA 41) -51 -18 11 981

Table 3: Anatomical results of a GLM analysis contrastingditions with and without a
key change. All active clusters preferentially favour kéaege stimuli.



We examined the difference between the two conditions aaintaa key change, and the
third condition which remained in the same key. A balanced/Glontrast between these
was performed and the results are shown in table 3. A diveztgank of activation is
present, of which two features are notable. First is thengtpresence of medial structures,
in particular cingulate cortex and caudate nucleus. Setotlte presence of preferential
activation for key changes in bilateral auditory cortexalfsverse temporal gyrus). The
activation curves in these areas show strongest activitthéodistant key changes, slightly
less (but still significant) activity for the close key chasg and much less activity for
no key changes. It should be emphasised that this occurredsaa variety of different
stimuli (all of equal amplitude and with very similar basiaditory features, such as
envelope and broad spectral content), and that both lefrightlauditory cortex showed
very similar response curves (see figure 2), highlightirgrtibust nature of this finding.
This suggests that these auditory cortical areas may namited to low level individual
tone processing, but might also be involved in some highderosequence processing.
This intriguing result merits further investigation.
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Figure 2: Activation curves in right (top) and left (bottoan)ditory cortices, for changing

to a distant key (left), changing to a close key (middle) a@mchaining in the same key

(right). Times are shown relative to the start of a given gtim block; the curves represent
averages over all blocks in a given condition.

3.1.3 Machine Learning fMRI Analysis

In order to test the ability of machine learning analysis &bedt patterns in fMRI data
relating to higher order cognitive tasks, we adopted a nmackearning framework of
Support Vector Machines (SVM) [20, 21] for a leave-subjeat-analysis, i.e. we learn
a discriminatory task on the combined data16f subjects and test on the remaining
subject. This procedure is repeated for all the subjects amdaged for all. For



comparison with the GLM analysis we confined ourselves totibe following tasks:
tonal (condition 5) versus atonal (condition 4) and key ¢jea(tonditions 1 & 2) versus
no key change (condition 3) stimuli. The overall aim is to efye whether given the
training subjects, in either of the tasks, is it possibledneralise the task for a new subject.

We used a linear kernel SVM that allows direct extractiorhefieight vector as an image
(i.e. the discriminating spatial pattern). A parameétethat controls the trade-off between
training errors and smoothness was fixedCat= 1 for all cases (default valué). For
both of the experiments we used the same grey matter contiagaks that were applied
in the GLM analysis. These were combined to give a meta grdyemianask across all
individuals. In addition to the preprocessing that was qrened on the data prior to the
GLM analysis (which was also adopted for this machine legrrdanalysis) we further
preprocessed the data by subtracting from each subjectrsthadan representing silence
as to remove baseline 'noise’ in the data.

In summary, we obtained &% accuracy for tonal versus atonal discrimination, with the
detection of tonality and atonality each obtaining an aacyinf55% and49% respectively.
The key change versus no key change discrimination tasknalokan accuracy a54%,
which comprised o82% for detecting key change ar®$% for no key change. It seems
that even with masking and the subtraction of the initiahsttee difference between the
conditions in each case remains minimal, with the resulttitheextremely difficult for the
learning algorithm to find a hyperplane that will accuratgistinguish between them.

4 Discussion

Using a conventional analysis, we have found clear actiwati motor areas in response
to tonal (as opposed to atonal) stimuli that cannot be ateihto actual motor activity.
Looking more closely at the relative distance of key changigsin a tonal context, we
have found that activity in auditory cortical areas is agsed with this distance, suggest-
ing that these areas may not be limited to low-level singteetprocessing as previously
thought. These unusual findings were detected with a romadytécal procedure and a
controlled experimental design, and suggest the need fitrefiuresearch in this area.

The relatively low classification performance of the maehiearning algorithm we at-
tribute to two related factors. Firstly, the task itself redocusing on higher order cognitive
functions (the cognition of tonal structure), which arearausly difficult to distinguish on
the basis of BOLD (blood-oxygen level dependent) respotieegtandard fMRI signal).
Secondly, inter-subject variance was quite high, whichmeehat a group-level classifica-
tion performance is liable to perform badly because eveh wileave-one-out approach,
the training data and test data are potentially quite differ As such, we would suggest
that in these situations, regression analysis might be meneficial, and that machine
learning framework for fMRI focusing on regression rathwart classification needs to be
developed.
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