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Abstract

The paper presents fMRI results from experiments of subjects listening
to musical stimuli. In this study we examine the neural correlates of
tonality by presenting a set of stimuli with key changes of different
distances along the circle-of-fifths, along with atonal control stimuli.
Results are presented using both conventional statisticalanalysis across
subjects, together with experiments using support vector machines. We
find that a number of areas are significantly more active for tonal than
atonal processing, and further that the response is significantly stronger
in some of these areas for more distant key changes.

1 Introduction

Music has attracted a wide spread of research into how and whydo people create, perform
and listen to music. In the following paper we focus on the study of tonality, which is a
major topic in music theory [1] and music psychology [2], investigating tonal processing,
and in particular the effect of distance along the circle-of-fifths [3] for key changes within



the stimuli. Tonal melodies are complex structures, and cognitive processing reflects this
structure [4]. Analysing the neural activity associated with a melody is therefore particu-
larly useful for determining which areas control higher order sequence processing [5].
The present study seeks to explore the effects of tonality inthe brain. Previous work in the
area of tonality [6] made strong claims about the possibility of identifying a tonal map in the
rostromedial prefrontal cortex. These results have not been reproduced to our knowledge.
We set ourselves a somewhat complementary goal of testing whether differences between
tonal and atonal stimuli can be detected, as well as differences correlating with the distance
along the circle-of-fifths as the stimuli change keys.
In addition to being a study on specific aspects of music, we are also interested in testing
different forms of analysis. In general machine learning methods have been recently ap-
plied to fMRI analysis [7, 8, 9, 10, 11, 12, 13, 14, 15] to analyse the relationship between
stimulus categories and fMRI responses. Higher order cognitive effects are known to be
difficult to detect in fMRI due to the presence of confounds and the nonlinear mapping
between cognition and BOLD response, so fMRI data from a music task that focuses on
such effects provides a significant challenge to machine learning algorithms. As well as the
conventional General Linear Model (GLM) analysis, therefore, we tested a machine learn-
ing approach (support vector machine) in the analysis of ourdata, in order to see whether
or not it was able to find meaningful patterns in this data.
This paper is structured as follows; Section 2 discusses thematerial and methods used
in our experiment. This contains an elaboration on the experiment protocol, as well as
providing basic information as to the participating subjects and acquisition of data. Section
2 ends with a description of the pre-processing applied to the fMRI data. In Section 3, we
give the results for the conventional (GLM) analysis and discuss the results of the machine
learning (SVM) approach. Finally, Section 4 brings the paper to a close with a discussion
on the work conducted and the analysis arising from it.

2 Materials and Methods

2.1 Experimental Design and Stimuli

The experiment was concerned with the tonality of short musical sequences. In particular,
the focus of interest was the effect of relative tonality (the relationship between musical
keys). Each stimulus consisted of 16 isochronous events lasting 500ms each (with each
stimulus therefore lasting8s), with no gaps in between; each event consisted of four si-
multaneous tones forming a chord recognised in Western tonal music theory. The stimuli
were created using the MIDI protocol, and rendered into audio files using a piano sound
patch from the Roland Sound Canvasc© digital samples. The stimuli were divided be-
tween tonal stimuli, which were designed to create a clear sense of key, and atonal stimuli
that were designed to create no clear sense of key, by the ordering of the chords, which
were nevertheless equally consonant at the individual chord level in both types of stim-
uli. In order to verify this sense of key, the MIDI toolbox [16] was used to test the
stimuli with the psychologically-derived Krumhansl-Kessler key-finding algorithm [17],
with µT = 0.93931 andσT = 0.038562 for the tonal stimuli, andµA = 0.65857 and
σA = 0.13196 for the atonal stimuli, whereµ is the mean of the strongest key certainty rat-
ings (ranging between 0 and 1), andσ is the standard deviation of these ratings. Altogether,
eight different tonal stimuli were created, and twenty-four atonal stimuli. For a single run,
stimuli were ordered into twenty-four groups of three stimuli with no gaps between stimuli
or groups. The first stimulus in each group was always a tonal stimulus presented in the
home key of C major, the second was always a tonal stimulus that could either be in the
distant key of F# major (first condition), the closely-related key of G major (second condi-
tion), or the same key of C-major (third condition). The third stimulus in each group was
always an atonal stimulus (fourth condition), which also reset the listener’s sense of key.



As a result of the contiguity of groups, the first stimulus in each group followed the atonal
stimulus in the previous group (except for the initial group), which was therefore defined as
the initial (fifth) condition. The first and second conditions therefore define changes from
one key to another (distant or close). The third condition defines no change of key. The
fourth condition defines no key present, and the fifth condition defines a change of no key
back to a sense of key. The stimuli were ordered such that all tonal stimuli were used an
equal number of times, and conditions appeared in all permutations equally in order to con-
trol for order effects. The behavioural task for subjects was to click the left mouse button
when they heard a change from one key to another (conditions one and two), and right-click
the mouse button when they heard a change from no key to a key (condition five), in order
to concentrate their attention on the tonal structure of thestimulus stream. The task was
explained as clicking in response to a change (since nonmusicians would not know what
is meant by a key), and a short training session prior to scanning was used to ensure that
subjects understood which type of change was being referredto. The behavioural results
indicated that subjects clearly understood and were able tocarry out the task.

2.2 Subjects

We tested sixteen right-handed subjects with normal hearing (9 female,7 male; age19−31)
none of whom had received any formal musical education. All subjects gave written in-
formed consent to the study, which was approved by the EthicsCommittee of the University
of Magdeburg.

2.3 Data Acquisition

Functional magnetic resonance imaging data was acquired atthe Leibniz Institute of
Neurobiology (Magdeburg, Germany) on a Siemens Trio (Erlangen, Germany)3T MRI
scanner equipped with an eight channel head coil. Functional volumes were collected
using echo planar imaging (EPI) with the following parameters: TE=30ms; TR=2000ms;
interslice time: 62ms; slice thickness:3mm; slice gap thickness:0.3mm; inplane
resolution: 3mm×3mm (giving 3mm×3mm×3mm cubic isovoxels); number of slices:
32; FA: 80◦; FOV: 192mm×192mm; matrix size:64× 64. Stimulus delivery and scanning
coordination was controlled with the Presentationc© software (Neurobehavioural Systems
Inc, Albany, USA) using a custom-written script. The perceived scanner noise was
attenuated by earplugs (24 dB) and ear muffs (20 − 30 dB) in which MRI compatible
electrodynamic headphones were integrated [18]. The loudness of the stimuli was
individually adjusted to a comfortable level. Each stimulus block lasted 8s (4 volumes)
and was immediately followed by the next stimulus block. Twoexperimental runs were
carried out during the session, with 20s (10 volumes) beforeeach run, and after the
final run, to provide a baseline condition. Altogether, eachsession therefore consisted
of 606 functional volumes, as well as anatomical data collection and dummy runs for
scanner alignment. Subjects were also given an initial scan-free practice period on stim-
uli not used in the functional data collection in order to ensure that they understood the task.

2.4 Pre-Processing

Functional data in the original space were co-registered with in-plane anatomical data and
preprocessed with3D motion correction using trilinear interpolation, slice scan time cor-
rection using sinc interpolation, linear trend removal, high-pass temporal filtering with a
cut-off of 3 cycles throughout the time course, equivalent to0.00236593Hz, and Gaussian
spatial smoothing with a FWHM of 4mm. A correlation analysis was performed in the
original data space following pre-processing to verify itseffectiveness. They were then
co-registered with a high-quality anatomical data set and transformed into AC-PC space
using using cubic spline interpolation and subsequently into Talairach space with trilinear



interpolation. These data were then used separately for both the conventional analysis and
the machine learning analysis.

3 Experimental Results

3.1 Conventional fMRI Analysis

The conventional analysis was performed with a General Linear Model (GLM) using Brain-
Voyager QXc© (Brain Innovation B.V.,Maastricht). Second-level (group) analyses for all
the results reported below were carried out using a two-stepprocedure. A grey-matter
cortical mask was applied and a fixed effects analysis withinvoxels with global Bonfer-
roni correction carried out to identify areas that are implicated in the processing of tonal
sequences for the group (and by inference for at least a proportion of the underlying popu-
lation). Only clusters that were strongly significant afterthis stringent correction procedure
(p<0.05, corrected) were considered further. A more specialised tonality cortical mask was
created based on these clusters (separately for each GLM contrast of interest), and a ran-
dom effects analysis (now also including between-subjectsvariance) carried out, and only
those voxels that survived (p<0.05, corrected at the mask level for a 5% false discovery
rate) were considered further. Finally, a minimum cluster size of 500 voxels was imposed
in order to allow only large activations. All active clusters over the baseline after this pro-
cedure are reported in the results below. The purpose of thisapproach is to identify regions
involved in tonality within the group (fixed effects analysis), and to determine the level of
inference possible to the underlying population (random effects analysis), with a stringent
multiple comparisons correction procedure and cluster size limit imposed in order to avoid
artefacts and susceptibility errors.

3.1.1 Tonal vs Atonal

Location Tal X Tal Y Tal Z Cluster Size
Right Precentral Gyrus (BA 4) 49 -10 45 1872
Left Medial Frontal Gyrus (BA 6) -1 -4 58 742
Left Precentral Gyrus (BA 4) -49 -10 42 1257

Table 1: Anatomical results of a GLM analysis contrasting tonal and atonal conditions.

Condition 49 -10 45 -1 -4 58 -49 -10 42
distant 0.739278 1.2853 1.06331
close 0.785971 1.23277 1.18109
same 0.864002 1.3916 1.25538
none 0.694907 1.1751 1.0339
initial 0.914343 1.35245 1.26462

Table 2: GLM beta statistics for each experimental condition for the three active clusters,
identified here by their Talairach coordinates.

The contrast examined here was for the initial tonal stimulivs the atonal stimuli, in order
to avoid any confounds related to key changes. The results can be seen in table 1. There
are three major active clusters. It is well established thatleft frontal regions are involved
in hierarchical pattern processing, including music processing [5], and is necessary for the
cognition of tonality, so it is not surprising to find activation in the left medial frontal gyrus
(BA6; the supplementary motor area). A clue to the specific role of this area in tonality
processing comes from the strong bilateral activation of the precentral gyrus (see figure 1).



One possibility is that this is simply motor activity related to the mouse click showing a
change from no key to key, with no mouse click required when moving from tonal to atonal
stimuli. However, an analysis with the contrast same (condition 3) vs atonal (condition
5) (neither of which requires a mouse click) was performed, and the same results were
found, so motor activity is not an adequate explanation here. The regression beta statistics
(table 2) show clearly that this area has a strong association with processing stable tonal
stimuli. There is a long tradition of musicians and music psychologists investigating the
link between music and motion [19], and with these three active clusters all involved in
motor processing, we have found what we believe is evidence for this link at a neural level.

Figure 1: Bilateral activation of the precentral gyrus for tonal vs atonal stimuli. All active
clusters preferentially favour tonal stimuli.

3.1.2 Key Changes

Location Tal X Tal Y Tal Z Cluster Size
Right Transverse Temporal Gyrus (BA 41)51 -17 10 1023
Right Insula (BA 13) 36 17 13 948
Right Lentiform Nucleus 24 -1 1 750
Right Caudate 14 -4 22 1443
Left Anterior Cingulate (BA 32) -1 41 11 2574
Left Cingulate Gyrus (BA 24) 0 -16 35 786
Left Superior Frontal Gyrus (BA 8) -12 50 36 2241
Left Transverse Temporal Gyrus (BA 41) -51 -18 11 981

Table 3: Anatomical results of a GLM analysis contrasting conditions with and without a
key change. All active clusters preferentially favour key change stimuli.



We examined the difference between the two conditions containing a key change, and the
third condition which remained in the same key. A balanced GLM contrast between these
was performed and the results are shown in table 3. A diverse network of activation is
present, of which two features are notable. First is the strong presence of medial structures,
in particular cingulate cortex and caudate nucleus. Secondis the presence of preferential
activation for key changes in bilateral auditory cortex (transverse temporal gyrus). The
activation curves in these areas show strongest activity for the distant key changes, slightly
less (but still significant) activity for the close key changes, and much less activity for
no key changes. It should be emphasised that this occurred across a variety of different
stimuli (all of equal amplitude and with very similar basic auditory features, such as
envelope and broad spectral content), and that both left andright auditory cortex showed
very similar response curves (see figure 2), highlighting the robust nature of this finding.
This suggests that these auditory cortical areas may not be limited to low level individual
tone processing, but might also be involved in some higher-order sequence processing.
This intriguing result merits further investigation.

Figure 2: Activation curves in right (top) and left (bottom)auditory cortices, for changing
to a distant key (left), changing to a close key (middle) and remaining in the same key
(right). Times are shown relative to the start of a given stimulus block; the curves represent
averages over all blocks in a given condition.

3.1.3 Machine Learning fMRI Analysis

In order to test the ability of machine learning analysis to detect patterns in fMRI data
relating to higher order cognitive tasks, we adopted a machine learning framework of
Support Vector Machines (SVM) [20, 21] for a leave-subject-out analysis, i.e. we learn
a discriminatory task on the combined data of15 subjects and test on the remaining
subject. This procedure is repeated for all the subjects andaveraged for all. For



comparison with the GLM analysis we confined ourselves to thetwo following tasks:
tonal (condition 5) versus atonal (condition 4) and key change (conditions 1 & 2) versus
no key change (condition 3) stimuli. The overall aim is to observe whether given the
training subjects, in either of the tasks, is it possible to generalise the task for a new subject.

We used a linear kernel SVM that allows direct extraction of the weight vector as an image
(i.e. the discriminating spatial pattern). A parameterC, that controls the trade-off between
training errors and smoothness was fixed atC = 1 for all cases (default value).1 For
both of the experiments we used the same grey matter corticalmasks that were applied
in the GLM analysis. These were combined to give a meta grey matter mask across all
individuals. In addition to the preprocessing that was performed on the data prior to the
GLM analysis (which was also adopted for this machine learning analysis) we further
preprocessed the data by subtracting from each subject the first scan representing silence
as to remove baseline ’noise’ in the data.

In summary, we obtained a54% accuracy for tonal versus atonal discrimination, with the
detection of tonality and atonality each obtaining an accuracy of55% and49% respectively.
The key change versus no key change discrimination task obtained an accuracy of54%,
which comprised of82% for detecting key change and25% for no key change. It seems
that even with masking and the subtraction of the initial scan the difference between the
conditions in each case remains minimal, with the result that it is extremely difficult for the
learning algorithm to find a hyperplane that will accuratelydistinguish between them.

4 Discussion

Using a conventional analysis, we have found clear activation in motor areas in response
to tonal (as opposed to atonal) stimuli that cannot be attributed to actual motor activity.
Looking more closely at the relative distance of key changeswithin a tonal context, we
have found that activity in auditory cortical areas is associated with this distance, suggest-
ing that these areas may not be limited to low-level single tone processing as previously
thought. These unusual findings were detected with a robust analytical procedure and a
controlled experimental design, and suggest the need for further research in this area.

The relatively low classification performance of the machine learning algorithm we at-
tribute to two related factors. Firstly, the task itself is one focusing on higher order cognitive
functions (the cognition of tonal structure), which are notoriously difficult to distinguish on
the basis of BOLD (blood-oxygen level dependent) response (the standard fMRI signal).
Secondly, inter-subject variance was quite high, which means that a group-level classifica-
tion performance is liable to perform badly because even with a leave-one-out approach,
the training data and test data are potentially quite different. As such, we would suggest
that in these situations, regression analysis might be morebeneficial, and that machine
learning framework for fMRI focusing on regression rather than classification needs to be
developed.
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