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Abstract: 

 

Music Neurotechnology is a new research area that is emerging at the crossroads of 

Neurobiology, Engineering Sciences and Music. Examples of ongoing research into this 

new area include the development of brain-computer interfaces to control music systems 

and systems for automatic classification of sounds informed by the neurobiology of the 

human auditory apparatus. In this paper we introduce neurogranular sampling, a new 

sound synthesis technique based on spiking neuronal networks (SNN). We have 

implemented a neurogranular sampler using the SNN model developed by Izhikevich, 

which reproduces spiking and bursting behavior of known types of cortical neurons. The 

neurogranular sampler works by taking short segments (or sound grains) from sound files 

and triggering them when any of the neurons fire. 

 



1 Introduction 

 

We are interested in exploring the behavior of computational models of brain functioning 

to make music. We find their ability to generate very complex biological-like behavior 

from the specification of relatively simple parametric variables compelling and inspiring. 

They allow for the design of complex sound generators and sequencers controlled by a 

handful of parameters. We envisage the design of new musical instruments based on such 

models. 

 

Many recent advances in the Neurosciences, especially in Computational Neuroscience, 

have led to a deeper understanding of the behavior of individual and large groups of 

biological neurons [1, 2] and we can now begin to apply biologically informed neuronal 

functional paradigms to problems of design and control [3, 4]. We have coined the term 

Music Neurotechnology to refer to a new research area that is emerging at the crossroads 

of Neurobiology, Engineering Sciences and Music. Examples of ongoing research into 

Music Neurotechnology include the development of brain-computer interfaces to control 

music systems [5, 6, 7] and systems for automatic classification of sounds informed by 

the neurobiology of the human auditory apparatus [8] to cite but two. This paper reports 

on the latest results of our ongoing research into Music Neurotechnology for sound 

synthesis with a view to developing new musical instruments based on neuronal 

functional paradigms. We introduce the neurogranular sampler, which uses spiking 

neuronal networks (SNN) models to control the triggering of sound grains taken from a 

given sampled sound. 



 

 

2 Spiking Neuronal Networks  

 

In order understand the functioning of the neurogranular sampler, one needs  to 

understand the basics of spiking neuronal networks.  

 

A neuron can be thought of as a cell that fires a traveling spiking signal to connected 

neurons when the voltage on its membrane exceeds a certain threshold voltage.  A neuron 

receiving several spikes simultaneously (or within a very small time-window) is likely to 

have its voltage pushed beyond the threshold level and will in turn, send spike signals to 

its connected neighbors. Furthermore, synapses that cause spiking signals tend to become 

potentiated and those, which do not cause spiking signals, become depleted, a 

phenomenon known as synaptic plasticity. There are also many varieties of spiking 

behavior, such as regular spiking and bursting (short bursts containing many spikes very 

close together in time), to cite but two. Millions of such adaptive, interconnected neurons 

produce very rich behavior, especially on a collective level of description, and patterns of 

firing regularly occur in large groups of neurons [9]. Figure 1 shows an example of such 

collective firing behavior, taken from a simulation of a group of 1000 coupled spiking 

neurons. 

 

The neurons in Figure 1 are numbered on the y-axis (with neuron number 1 at the bottom, 



and neuron number 1000 at the top) and time, which runs from zero to 1000 milliseconds 

(or 1 second), is on the x-axis. This is therefore a simulation of the activity of this group 

of 1000 artificial neurons over a period of one second. Every time a neuron fires, a dot is 

placed on the graph at the appropriate time on a line horizontally drawn from that 

particular neuron. The dots on the graph can thus be regarded as firing events. In the 

particular graph shown, because of the plasticity of the neuronal connections, many of the 

events are centered in four bands, which appear as a pulse (or wave) of spiking events. 

 

Figure 1.  An example of collective firing behavior. Neuron numbers are plotted (y-axis) 

against time (x-axis) for a simulation of 1000 neurons over a period of one second. Each 

dot represents a firing event. 

 

The spiking events are indeterminate.  They are not predictable in advance but are 



certainly not random, and, as is the case with the scenario shown in Figure 1, can be very 

correlated. A rhythmic pattern such as the one pictured in Figure 1 is connected with the 

polychronous firing of a particular group of neurons in which the firing of a particular 

neuron generates a sequence of events. These events stimulate a large number of neurons, 

which form a closed group in which the connections between the neurons are reinforced 

through repeated firing of the first neuron. The group of neurons fire not in synchrony but 

with polychrony. It is the rhythmic nature of these sequences of firing events that have 

become of great interest to us. Indeed, this phenomenon has been suggestively referred to 

as cortical songs by Ikegaya and colleagues [10]. 

 

In this paper, we focus on a spiking neural network (SNN) model developed by 

Izhikevich [11], which reproduces spiking and bursting behavior of known types of 

cortical neurons. The model contains N neurons, each of which are described by two 

dimensionless variables vi and ui, where vi represents the membrane potential of the ith 

neuron and ui represents a membrane recovery variable, which provides negative 

feedback to vi. The system is then described by the following coupled ordinary non-linear 

differential equations: 
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 with the following auxiliary condition after spike resetting: if vi ≥ 30 millivolts 



then vi→c and ui→( ui + d). Essentially, this means that when a neuron receives a spike 

input, its membrane potential is immediately reset.  

 

The neurons are coupled to one another through a matrix of synaptic connection weights. 

Synaptic connection weights are given by the matrix S = (sij), such that the firing of the 

jth neuron instantaneously changes the variable vi by sij. Variations on this rule can make 

the updating of the weights more biologically informed, for example by including 

plasticity and axonal conduction delays. Synaptic currents or injected dc-currents 

(currents that come from either other neurons or from sensory information) are 

encompassed within variable I. Variables a, b, c and d are parameters whose effects are 

summarized in Figure 2. Basically, a describes the time scale of the recovery variable ui  

and b describes the sensitivity of ui to the fluctuations of the membrane potential vi. The 

parameter c corresponds to the after-spike reset value of vi and d represents the after-

spike reset value of ui. Different values for these parameters produce different individual 

intrinsic neuron firing patterns such that complex spiking, bursting or chattering of 

cortical and thalamic neurons can be simulated. Izhikevich has suggested typical values 

for these variables and the types of patterns they engender [11]. Figure 3 illustrates four 

examples of such patterns, referred to as regular spiking (RS), intrinsically bursting (IB), 

chattering (CH) and fast spiking (FS).  



 

Figure 2. Known types of neurons correspond to different values of the parameters a, b, c 

and d in Izhikevich’s model. (This figure is reproduced with permission from Eugene 

Izhikevich. Electronic version of the figure and reproduction permissions are freely 

available at www.izhikevich.com) 

 

 

 

 



Figure 3. Examples of spiking patterns that can be produced by the SNN model. Each 

shows the response of the model to a step of dc-current l(t) = 10. Note l(t) in the figure 

corresponds to the variable I  in the differential equations above. (This figure is 

reproduced with permission from Eugene Izhikevich. Electronic version of the figure and 

reproduction permissions are freely available at www.izhikevich.com) 

 

 

All of the parameters in the model can be used to control the time of firing for each 

neuron. Every time a neuron fires, a dot is placed in a graph such as the one shown in 

Figure 1 and we use these events as temporal points at which sounds are produced.  

 

 

3 The Neurogranular Sampler  

 

The neurogranular sampler works by taking short segments, or sound grains, from sound 

files and triggering them when any of the neurons fire. These sound grains are packets of 

sound within a range of duration of approximately 10-100 milliseconds. When a neuron 

in the network fires at time t, a sound grain of predetermined length and amplitude is 

taken from the recorded sample of sound, convoluted within a Hanning envelope [12] and 

played. Networks with synchronized firing of neurons produce a periodic pulse, whilst 

networks containing only a few firing neurons produce sparse rhythmic sequences.  

 

We have implemented two versions of the neurogranular sampler using two variations of 



the SNN model proposed by Izhikevich: a simple model, where the neurons are 

instantaneously updated with firing information with static connectivity, and an advanced 

model, where axonal conduction delays are built into the system. The axonal conduction 

delays replicate the fact that spike waves take time to travel along the axons to the 

synapses of the post-synaptic neurons. In this case, the elements of the matrix of 

connections are updated according to a Spike-Timing Dependent Plasticity (STDP) 

algorithm. In this algorithm, connections for which pre-synaptic spikes cause post-

synaptic firing are potentiated and those for which pre-synaptic spikes arrive after post-

synaptic firing has occurred are depressed. At present, the neuronal network remains 

isolated from sensory information;  that is, it is  not stimulated from outside the network. 

Rather, the network is driven by noise such that the initial current and voltage parameters 

within a proportion of neurons will be of a high enough value to drive them to fire. It is 

interesting in itself that random (noisy) inputs can produce synchronous rhythms, a well-

understood phenomenon within the dynamical systems community. 

 

In the implementation of the neurogranular sampler using the simple SNN model, the 

connections are geometrically noisy, in the sense that the matrix S is a random matrix 

with all-to-all connections, and all current inputs are noise. When all N neurons are in 

regular spiking mode, a variety of musically interesting results can be produced by 

having either rather few (up to 10) or many (over 500) neurons. The result with up to 10 

neurons sounds very sparse but it is possible to hear rhythmic patterns, which emerge 

and then transiently die away.  Figure 4 shows a didactic simple example, which includes 

only four excitatory neurons and one inhibitory neuron (which have associated negative 



elements in the matrix S) all of which having regular spiking behavior. The sound 

sample was taken from the recording of a single note played on a harmonium. In this 

case, the durations of the grains were between 250 and 500 samples (with sampling 

frequency at 44,100 Hz) and had randomly assigned amplitudes. Synchronous behavior 

takes place if all the neurons are identical and if there are more than 500 of them. This 

sounds like a very gritty pulse, especially if the selected grain size is short.  

 

The neurogranular sampler using the advanced SNN model included axonal conduction 

delays and the STDP algorithm. By way of comparison with the output of the sampler 

using the simple SNN model shown in Figure 4, Figure 5 shows the output using the 

advanced SNN model with four excitatory neurons and one inhibitory neuron, with an 

axonal delay of up to 10 milliseconds, including STDP. Note that there is much more 

firing activity here and that this firing appears in a much more correlated fashion. As 

with the example shown in Figure 4, the sound grains in Figure 5 were also taken from a 

single note played on a harmonium. The durations of the grains were between 250 and 

500 samples (with sampling frequency at 44,100 Hz) and had randomly assigned 

amplitudes. 

 



 

Figure 4. An example produced by the neurogranular sampler using the simple SNN 

model with four excitatory neurons and one inhibitory neuron, all of regular spiking 

type. 

 

 

Figure 5. Output from the neurogranular sampler using the advanced SNN model with 

four excitatory neurons and one inhibitory neuron, all of regular spiking type including 

an axonal delay of up to 10 milliseconds and Spike-Timing Dependent Plasticity (STDP).  

 

The axonal delays along with the STDP algorithm encourage particular pathways in the 

network to become established, which lead to more events and more regular frequency of 

neuronal firing. In the absence of sensory input to the network, these pathways have a 

transient lifetime, but we would expect these pathway lifetimes (and similarly the 

correlations in the audio output) to increase substantially if there were repeated 

correlated sensory input to the network. 

 

 



4 Concluding Remarks 

 

In this paper we have outlined a novel approach to sound synthesis based on neuronal 

functional paradigms. We presented the neurogranular sampler, which uses spiking 

neuronal networks (SNN) models to control the triggering of sound grains taken from a 

given sampled sound.  

 

Recently, artist Jane Grant has used the neurogranular sampler to produce the sonic 

elements within a sound and video installation called Threshold [13]. In this work, the 

sound of both voice and breath are recorded and then reconfigured via the neurogranular 

sampler in real-time in order to merge the voice or breath with the patterns and rhythms 

occurring in the neuronal network. The work uses the advanced version of the sampler, 

including Spike Timing Dependent Plasticity and a new interface for the instrument was 

developed in order to complete the work [14]. The Neurogranular also forms the basis of 

a new work entitled The Fragmented Orchestra by Jane Grant, John Matthias and Nick 

Ryan [15] in which a real-time, stimulated version of the instrument is spatially 

distributed around 24 sites around the UK and the FACT Gallery in Liverpool. The work 

recently won PRS New Music Award 2008 [16]. We have also exploited the neuronal 

firing events to trigger signals for performers via flashing LED lights in a new work, 

Cortical Songs by John Matthias and Nick Ryan [17] for solo violin and string orchestra. 

Cortical Songs has been released in an album by the Nonclassical record label, which 

also included 11 remixes by artists and musicians such as Radiohead’ Thom Yorke and 

The Verve’s Simon Tong [18]. 



 

Technically, we found that the system has a very wide variety of temporal patterns and 

behaviors, which can be controlled according to the parameters of the model. Different 

sounds can be obtained by varying parameters such as:  

 

a) the number and type of neurons 

b) the geometry of the connectivity 

c) the parameters a, b, c and d, which determine the intrinsic properties of the neurons 

d) the “sensory” input I  

e) the nature of the sample sound source and the  

f) the duration of the triggered sample  

 

Most of the settings above can be interpolated during sound production, allowing for 

changes on the fly. Generally speaking, increasing the number of neurons in the model 

means more firing and therefore more sonic texture. However, when the network exhibits 

synchronous behavior, increasing the number of neurons tends to lower the frequency of 

the collective response. 
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