
1

Int. Journ. of Unconventional Computing, Vol. 0, pp. 1–13
Reprints available directly from the publisher
Photocopying permitted by license only

©2013 Old City Publishing, Inc.
Published by license under the OCP Science imprint,

a member of the Old City Publishing Group

Unconventional Computation and
Teaching: Proposal for MUSIC, a Tone-Based

Scripting Language for Accessibility,
Computation and Education

ALEXIS J. KIRKE AND EDUARDO R. MIRANDA

Interdisciplinary Centre for Computer Music Research, School of Humanities, Music and
Performing Arts, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK

E-mail: Alexis.Kirke@Plymouth.ac.uk

Received: January 21, 2013. Accepted: March 11, 2013.

This paper provides a proposal for a tone-based programming/scripting
language called MUSIC (the name is an acronym for Music-Utilizing
Script Input Code). In a MUSIC program input and output consists
entirely of musical tones. Computation can be done through musical
transformations of notes and melodies. MUSIC can be used for teaching
the basics of script-based programming, computer-aided composition,
and provided programming access to those with limitations in sight or
physical accessibility. As a result of MUSIC’s approach to tone-based
programming and computation, it also allows for a development environ-
ment that utilizes computer expressive performance for highlighting
structure, and emotional transformation to highlight bugs.

Keywords:  Software Development, Whistling Languages, Human-Computer
Interaction, Education, Music, Emotion, Computation

1  INTRODUCTION

In this paper a new scripting language is proposed called MUSIC, standing
for Music-Utilising Script Input Code. MUSIC is a language whose elements
and keywords consist of groups of tones or sounds, separated by silences. The
tones can be entered into a computer by whistling, humming, or “LA-LA”ing.
Non-pitched sounds can be generated by clucking, tutting or tapping the table

2	 A. J. KIRKE AND E. R. MIRANDA

top for example. The keywords in MUSIC are made up of a series of non-
verbal sounds, sometimes with a particular pitch direction order. MUSIC uti-
lizes a simple script programming paradigm. It does not utilize the MAX/
MSP-type or visual programming approach often used by computer musi-
cians, as its tone-based input is designed to help such programmers access
and learn script-based approaches to programming.

The purpose of MUSIC is to fivefold: to provide a new way for teaching
script programming for children, to provide a familiar paradigm for teaching
script programming for composition to non-technically literate musicians
wishing to learn about computers, to provide a tool which can be used by
blind adults or children to program, to generate a proof of concept for a
hands-free programming language utilizing the parallels between musical
and programming structure, and to demonstrate the application of musical
emotion and computer expressive performance to software sonification.

Although the primary purpose of MUSIC is in the areas of education,
accessibility and computer music, it also utilizes new non-standard computa-
tion [1] approaches based on musical transformations. Thus as well as being
an application of these methods of non-standard computation, it provides a
framework within which to investigate them. The approach provided in this
paper involves a common musical transformation in music composition when
a single note in a musical motive is replaced by multiple notes. Familiar
examples include Mozart String Quartet K.465, Allegro, and Beethoven
Symphony No. 7, Movement 2. This method is utilized as a command in
MUSIC. It will be demonstrated how it can be used as a multiplicative com-
putation tool.

The fact that computation with these transformations is possible is what
makes MUSIC feasible, and this also makes the creation of innovative devel-
opment and debugging environments possible too. It will be seen that these
environments allow the structure of a MUSIC program to be aurally empha-
sized using computer expressive musical performance; and also provide a
way of highlighting bugs through tempo and key-mode transformations.

2  RELATED WORK

There have been musical languages constructed before for use in general (i.e.
non-programming) communication – for example Solresol [2]. There are also
a number of whistled languages in use including Silbo in the Canary Islands.
There are also whistle languages in the Pyrenees in France, and in Oacaca in
mexico [3, 4].

A rich history exists of computer languages designed for teaching children
the basics of programming. LOGO [5] was an early example, which provided
a simple way for children to visualize their programs through patterns drawn
on screen or by a “turtle” robot with a pen drawing on paper. Some teachers

	 PROPOSING MUSIC, TONE-INPUT SOFTWARE LANGUAGE	 3

have found it advantageous to use music functions in LOGO rather than
graphical functions [6].

A language for writing music and teaching inspired by LOGO actually
exists called LogoRhythms [7]. However the language is input as text. The
language was developed so as to teach non-programming-literate musicians
to write scripts. Although tools such as MAX/MSP already provide non-pro-
grammers with the ability to build musical algorithms, their graphical
approach lacks certain features that a scripting language such as Java or Mat-
lab provide.

As well as providing accessibility across age and skill levels, sound has
been used in the past to give accessibility to those with visual issues. Emac-
speak [8] for example makes use of different voices/pitches to indicate differ-
ent parts of syntax (keywords, comments, identifiers, etc). There are more
advanced systems which sonify the Development Environment for blind
users [9] and those which use music to highlight errors in code for blind and
sighted users [10].

The use of music in unconventional computation can be found in slime-
mould-based [11] and in vitro neuron-based [12] synthesizers. In these cases
the computations in the substrate are used to generate novel compositional
tools. The direct use of music as a computational tool can be found in [13]
and [14] in which tunes are used as inputs to a form of “Logic Gate” and
“Musical Neuron” to perform emotion-based processing.

3 “MUSIC” INPUT

A MUSIC input string can be an audio file or stream, or a MIDI file, con-
sisting of a series of sounds. If it is an audio file then simple event and pitch
detection algorithms [15] are used to detect the commands. The command
sounds are made up of two types of sound: dots and dashes. A dot is any
sound less than 300mS in length, a dash is anything longer. Alternatively a
dot is anything less than 1/9 of the longest item in the input stream.

A set of input sounds is defined as a “grouping” if the gaps between the
sounds are less than 2 seconds and it is surrounded by silences of 2 seconds
or more. Note that these time lengths can be changed by changing the Input
Tempo of MUSIC. A higher input tempo setting will reduce the lengths
described above. Figure 1 shows two note groupings. The first is made up of
a dash and 4 dots, the second grouping is made up of 4 dashes.

4  COMMANDS

Table 1 shows some basic commands in MUSIC. Each command is a note
grouping made up of dots and/or dashes, hence it is surrounded by a rest. The

4	 A. J. KIRKE AND E. R. MIRANDA

second column gives what is called the Symbol notation. In Symbol notation
a dot is written as a period “.” and a dash as a hyphen “-“. Note grouping gaps
are marked by a forward slash “/”. The symbol notation is used here to give
more insight to those who are unfamiliar with musical notation.

Although MUSIC’s commands can be entered ignoring pitch there are
pitched versions of the commands which can be useful either to reduce the
ambiguity of the sonic detection algorithms in MUSIC or to increase struc-
tural transparency for the user. The basic protocol is that a “start something”
command contains upward movement or more high pitches, and a “stop
something” command contains lower pitches and more downward pitch
movement. This can create a cadence-like or “completion” effect (an example
of this is shown later).

For example Print could be 4th interval above the End Print pitch. A
Repeat command could be two pitches going up by a tone, and End Repeat
the same two notes but in reverse pitch order. The rhythm definitions all stay
the same and rhythm features are given priority in the sound recognition algo-
rithms on the input in any case. However using the pitched version of MUSIC
is a little like indenting structures in C++ or using comments, it is good prac-
tice as it clarifies structure. In fact it is possible to change the MUSIC input
interface to force a user to enter the pitched version should they wish. In
addition it turns a music program into an actual tune, rather than a series of
tunes bounded by Morse Code type sounds. This tune-like nature of the pro-
gram can help the user in debugging (as will be explained later) and to per-
haps understand the language from a more musical point of view.

There is also an input mode called Reverse Rhythm, in which the start and
stop command rhythms are reversed. In the default input mode shown in
Table 1, a command starts with a longer note (a dash), and ends with a shorter
note (a dot). However it is quite common in musical cadences to end on a
longer note. So it a user prefers they can reverse the rhythms in the stop and
start commands in Table 1 by switching to Reverse Rhythm mode.

5  EXAMPLES

The Print command in Table 1 will simply treat the sounds between itself
and the Stop Print command as actual musical notes, and simply output
them. It is the closest MUSIC has to the PRINT command of BASIC. For

FIGURE 1
Examples of input types

	 PROPOSING MUSIC, TONE-INPUT SOFTWARE LANGUAGE	 5

example suppose a user approximately whistles or hums the tune shown in
Figure 2 (Symbols “/-/BCCD/./”). Then MUSIC will play back the 4 notes
in the middle of the figure (B,C,C,D) at the rhythm they were whistled or
hummed in.

The Repeat command in Table 1 needs to be followed in a program by a
note grouping which contains the number of notes (dots or dashes) equal to
the number of repeats required. Then any operation between those notes and
the End Repeat note grouping will be repeated that number of times. There
are standard repeat signs in standard musical notation, but these are not very

Input Grouping Symbols Name

/-/ Print

/./ End Print

/--/ Repeat

/../ End Repeat

/…-/ Define Object

/…./ End Object

/.-/ Use Object

/..-/ Operator

/…/ End Operator

/..--/ Linear Operator

/-./ Input

/--./ If Silent

TABLE 1
Core MUSIC Commands

6	 A. J. KIRKE AND E. R. MIRANDA

flexible and usually allow for only one repeat. As an example of the Repeat
command Figure 3 starts with a group of 2 dashes, indicating a Repeat com-
mand (Symbols: “/--/…/-/BCCD/./../”). Then a group of 3 dots – indicating
repeat 3 times. The command that is repeated 3 times is a Print command
which plays the 4 notes at the start of the second line in Figure 3 (B,C,C,D).
So the output will be that shown in Figure 4, that motif played three times
(BCCDBCCDBCCD).

5  OBJECTS

The previous example, in Figures 3 and 4, shows a resulting output tune that
is shorter than the tune which creates it – a rather inefficient form of program-
ming! Functionality is increased by allowing the definition of Objects. Exam-
ples will now be given of an Outputting object and an Operating object. An
outputting object will simply play the piece of music stored in it. An example
of defining an outputting object is shown in Figure 5. The Define and End
Object commands can be seen at the start and end of Fig 5.’s note stream, take
from Rows 5 and 6 of Table 1.

The motif in the middle of the top line of Fig. 5 (B,D,B) is the user
defined “tone name” of the object, which can be used to reference it later.
The contents of the object is the 7 note motif at the start of the second line

FIGURE 2
A Print Example

FIGURE 3
A Repeat Example

FIGURE 4
MUSIC Output from Fig. 3 Repeat

	 PROPOSING MUSIC, TONE-INPUT SOFTWARE LANGUAGE	 7

in Figure 5 (B,C,C,D,C,D,B). It can be seen that this motif is surrounded by
Print and End Print commands. This is what defines the object as an Out-
putting object. Figure 6 shows a piece of MUSIC code which references the
object defined in Figure 5. The output of the code in Fig. 6 will simply be
to play the tune BCCDCDB twice, through the Use Object command from
Table 1.

The next type of object - an operating object – has its contents bordered by
the Operator and End Operator commands from Rows 8 and 9 in Table 1.
Once an operator object has been defined, it can be called, taking a new tune
as an input, and it operates on that tune in the common compositional method
described earlier in this paper: it can replace each single note by a group of
notes. An example is shown in Figure 7.

Figure 7 is the same as Figure 6 except for the use of the Operator and End
Operator commands from Table 1, replacing the Print and End Print com-
mands in Fig. 6. The use of the Operator command turns the BCCDCDB
motif into an operation rather than a tune. Each pitch of this tune is replaced
by the intervals input to the operation. To see this in action consider Figure 8.
The top line starts with the Use Object command from Table 1, followed
by the name of the object defined in Figure 7. The final part of the top line of
Fig. 8 is an input to the operation. It is simply the two notes C and B.

The resulting much longer output shown in the bottom line of Fig. 8 comes
from MUSIC replacing every note in its operator definition with the notes C
and B. So its operator was defined in Figure 7 with the note set BCCDCDB.
Replacing each of these notes with the input interval CB we get BACBCB-

FIGURE 5
An Outputting Object

FIGURE 6
Calling the object from Figure 5 twice

FIGURE 7
Defining an Operator object

8	 A. J. KIRKE AND E. R. MIRANDA

DCCBDCBA which is the figure in the bottom line of Figure 8. Note that
MUSIC pitch quantizes all data to C Major by default (though this can be
adjusted by the user).

5  OTHER COMMANDS AND COMPUTATION

It is beyond the scope of this proposal paper to list and give examples for all
commands. However a brief description will be given of the three remaining
commands from Table 1. The Linear Operation command in Table 1 actually
allows a user to define an additive operation on a set of notes. It is a method
of adding and subtracting notes from an input parameter to the defined oper-
ation. When an Input command (in the last-but-one row of Table 1) is exe-
cuted by MUSIC the program waits for the user to whistle or input a note
grouping and then assigns it to an object. Thus a user can enter new tunes
and transformations during program execution. Finally the If Silent com-
mand in the last row of Table 1 takes as input an object. If and only if the
object has no notes (known in MUSIC as the Silent Tune) then the next note
grouping is executed.

Although MUSIC could be viewed as being a simple to learn script-based
“composing” language, it is also capable of computation, even with only the
basic commands introduced. For example Printing two tunes T1 and T2 in
series will result in an output tune whose number of notes is equal to the
number of notes in T1 plus the number of notes in T2. Also, consider an
operator object of the type exemplified in Figures 6-8 whose internal operat-
ing tune is T2. Then calling that operator with tune T1 will output a tune of
length T1 multiplied by T2. Given the Linear Operator command which
allows the removing of notes from an input tune, and the If Silent command,
there is the possibility of subtraction and division operations being feasible
as well.

As an example of computation consider the calculation of x3 - the cube of
a number. This is achievable by defining operators as shown in Figure 9.
When executed by the user, they can whistle a note grouping of x notes, and
have x3 notes played back. To understand how this MUSIC code works it is

FIGURE 8
Calling an Operator object, and the resulting output

	 PROPOSING MUSIC, TONE-INPUT SOFTWARE LANGUAGE	 9

shown in pseudocode below. Each line of pseudocode is also indicated in
Figure 9.

1 Input X
2 Define Object Y
3 Operator
4 Use Object X
5 End Operator
6 End Object
7 Print
8 Use Object(Y, Use Object(Y,X)))
9 End Print

Note that MUSIC always auto-brackets from right to left. Hence line 8 of
the pseudocode is indeed instantiated in the code shown in Figure 9. Figure 9
also utilizes the pitch-based version of the notation discussed earlier.

6  MUSICO-EMOTIONAL DEBUGGING

Once entered, a program listing of MUSIC code can be done in a number
of ways. The musical notation can be displayed, either in common music
notation, or in a piano roll notation (which is often simpler for non-musi-
cians to understand). A second option is a symbolic notation such as the
Symbols of ‘/’, ‘.’ and ‘-‘ in column 2 of Table 1. Or some combination of
the words in column 3 and the symbols in column 2 can be used. However
a more novel approach can be used which utilizes the unique nature of the
MUSIC language. This involves the program being played back to the user
as music.

FIGURE 9
MUSIC Code to Cube the Number of Notes Whistled/Hummed

10	 A. J. KIRKE AND E. R. MIRANDA

One element of this playback is a feature of MUSIC which has already
been discussed: the pitched version of the commands. If the user did not enter
the commands with pitched format, they can still be auto-inserted by the
development environment and played back in the listing in pitched format -
potentially helping the user understand the structure more intuitively.

In fact a MUSIC development environment is able to take this one step
further, utilizing affective and performative transformations of the music. It
has been shown that when a musician performs they will change their tempo
and loudness based on the phrase structure of the music composition they’re
performing. These changes are in addition to any notation marked in the
score by the composer. The changes emphasise the structure of the piece [16].
There are computer systems that can simulate this “expressive performance”
behaviour [17], and MUSIC utilizes one of these in its debugger. As a result
when MUSIC plays back a program which was input by the user, the program
code speeds up and slows down in ways not input by the user but which
emphasise the hierarchical structure of the code. Like the pitch-based nota-
tion this can be compared to the indenting of text computer code.

Figure 9 can be used as an illustration. Obviously there is a rest between each
note grouping. However at each of the numbered points (where the numbers
represent the lines of the pseudocode discussed earlier) that rest would be played
back as a longer rest by the MUSIC development environment, because of the
computer expressive music performance. This has the perceptual effect of divid-
ing the program aurally into “groupings of note groupings” as well as note group-
ings, to the ear of the listener. So what the user will hear is that when the note
groupings are related to the same command instantiation, they will be compressed
closer together in time – and appear psychologically as a single meta-grouping.
Whereas the notes groupings between separate command sections of code (the
numbered parts of Figure 9) will tend to be separated by a slightly longer pause.
This is exactly the way that musical performers emphasise the structure of a nor-
mal piece of music into groupings and meta-groupings and so forth; though the
musician might refer to them as motives and themes and sections.

Additionally to the use of computer expressive performance: when play-
ing back the program code to the user, the MUSIC development environ-
ment can transform it emotionally to highlight errors in the code. For good
syntax the code will be played in a “happy” way – higher tempo and major
key. For code with syntax errors, it will be played in a “sad” way – more
slowly and in a minor key. Such musical features are known to express hap-
piness and sadness to listeners [18]. The Sadness not only highlights the
errors, but also slows down the playback of the code, which will make it
easier for the user to understand. Taking the code in Figure 9 as an illustra-
tion again, imagine that the user had entered the program with one syntax
error, as shown in Figure 10. Four notes in the boxed area have been flat-
tened in pitch (the “b” sign) in Figure 10, the reason for which will be
explained below.

	 PROPOSING MUSIC, TONE-INPUT SOFTWARE LANGUAGE	 11

The note grouping at the start of the highlighted area should have been a
‘Use Object’ command from Table 1. However by accident the user sang /
whistled / hummed the second note too quickly and it turned into an ‘End
Repeat’ command instead. This makes no sense in the syntax, and confuses
the meaning of all the note groupings until the end of the boxed area. As a
result when music plays back the code it will play back the whole boxed area
at two-thirds of the normal tempo. The four notes in the boxed area which
have been flattened in pitch (the “b” sign) are marked to indicate how the
development environment plays back the section of code effected by the
error. These flats will turn the boxed area from a tune in the key of C major to
a tune in the key of C minor. So the error-free area is played back at full
tempo in a major key (a “happy” tune) and the error-affected area is played
back at two-thirds tempo in a minor key (a “sad” tune). Not only does this
highlight the affected area, it also provides a familiar indicator for children
and those new to programming: “sad” means error.

7  CONCLUSIONS

A new scripting language called MUSIC has been proposed whose elements
and keywords consist of groups of tones or sounds, separated by silences.
Computation can be done through musical transformations of notes and mel-
odies. The purpose of MUSIC is fivefold: to provide a new way for teaching
script programming for children, to provide a familiar paradigm for teaching
script programming for composition to non-technically literate musicians
wishing to learn about computers, to provide a tool which can be used by
blind adults or children to program, to generate a proof of concept for a
hands-free programming language utilizing the parallels between musical

FIGURE 10
MUSIC Code from Figure 9 with a Syntax Error

12	 A. J. KIRKE AND E. R. MIRANDA

and programming structure, and to demonstrate the application of musical
emotion and computer expressive performance to software sonification.

It has been demonstrated how MUSIC utilizes new non-standard compu-
tation approaches based on musical transformations; and suggested that
MUSIC could provide a framework within which to investigate more such
transformations. The fact that computation with these transformations is pos-
sible is at the heart of what makes MUSIC feasible, and thus what makes the
investigation of innovative development and debugging environments for
tone-based programming possible. These aural environments highlight the
program structure of MUSIC using simulations of human expressive perfor-
mance, and highlight syntax errors by performance emotional-musical trans-
forms on the code in the areas where the errors occur.

One element of future work in investigating MUSIC is: how well will people
who learned script-programming approaches using MUSIC be able to utilize
their learned skills in programming languages such as Visual Basic or C, that use
standard computation approaches, as opposed to musical transform-based com-
putation? Another key element is investigating the flexibility of the Operator and
Linear Operator commands in Table 1 to perform calculations. They can be
viewed as roughly analogous to multiplicative and additive calculations. Are
there more flexible or powerful musical transformations that can be borrowed
from composers and musicologists which can fulfill these functions more effi-
ciently? Or which can extend the practical or theoretical computational power of
MUSIC? Investigating these questions will also provide further answers about
the utility of musical transforms as a non-standard form of computation.

REFERENCES

  [1]	 Gramb, T., Gram,T. and Pellizzari, T. (1997) Non-Standard Computation, Wiley & Sons,
New York, USA

  [2]	 Gajewski, B. (1902) Grammaire du Solresol, France
  [3]	 Busnel, R.G. and Classe, A. (1976) Whistled Languages. New York: Springer-Verlag.
  [4]	 Meyer J. (2005) Typology and intelligibility of whistled languages: approach in linguistics

and bioacoustics. PhD Thesis. Lyon University, France
  [5]	 Harvey, B. (1998) Computer Science Logo Style, MIT Press, USA
  [6]	 Guzdial, M. (1991) Teaching Programming with Music: An Approach to Teaching Young

Students About Logo, Logo Foundation, USA
  [7]	 Hechmer, A., Tindale, A., Tzanetakis, G. (2006) LogoRhythms: Introductory Audio Pro-

gramming for Computer Musicians in a Functional Language Paradigm, In Proceedings of
36th ASEE/IEEE Frontiers in Education Conference, San Diego, CA, IEEE

  [8]	 Raman, T.V. (1996) Emacspeak - A Speech Interface, In Proceedings of 1996 Computer-
Human Interaction Conference, ACM New York, NY, USA

  [9]	 Stefik, A., Haywood, A., Mansoor, S., Dunda, B., Garcia, D. (2009) SODBeans. In Pro-
ceedings of the 17th international Conference on Program Comprehension. Vancouver,
B.C. Canada, IEEE Computer Society

[10]	 Vickers, P., Alty, J.L. (2003) Siren songs and swan songs debugging with music., Com-
munications of the ACM, Vol. 46, No. 7, pp. 86-93, ACM New York, NY, USA

	 PROPOSING MUSIC, TONE-INPUT SOFTWARE LANGUAGE	 13

[11]	 Miranda, E., Adamatzky, A. and Jones, J. (2011) Sounds Synthesis with Slime Mould of
Physarum Polycephalum, Journal of Bionic Engineering 8, pp. 107-113 Elsevier

[12]	 Miranda, E. R., Bull, L., Gueguen, F., Uroukov, I. S. (2009). “Computer Music Meets
Unconventional Computing: Towards Sound Synthesis with In Vitro Neuronal Networks”,
Computer Music Journal, Vol. 33, No. 1, pp- 9-18.

[13]	 Kirke, A., Miranda, E. (In Press) “Pulsed Melodic Processing – the Use of Melodies in
Affective Computations for Increased Processing Transparency”. Music and Human-
Computer Interaction, S. Holland, K. Wilkie, P. Mulholland and A. Seago (Eds.), London:
Springer.

[14]	 Kirke, A., Miranda, E. (2012) Application of Pulsed Melodic Affective Processing to
Stock Market Algorithmic Trading and Analysis, Proceedings of 9th International Sympo-
sium on Computer Music Modeling and Retrieval (CMMR2012), London

[15]	 Lartillot, O., Toiviainen, P. (2007). MIR in Matlab (II): A Toolbox for Musical Feature
Extraction From Audio. In Proceedings of 2007 International Conference on Music Infor-
mation Retrieval, Vienna, Austria.

[16]	 Palmer, C. (1997) Music Performance. Annual Review of Psychology, Vol. 48, pp. 115-
138, Annual Reviews, Palo Alto, USA

[17]	 Kirke, A., Miranda, E.R. (2012) Guide to Computing for Expressive Music Performance,
Springer, USA

[18]	 Lvingstone, S.R., Muhlberger, R., Brown, A.R. (2007) Controlling musical emotionality:
An affective computational architecture for influencing musical emotions, Digital Creativ-
ity 18(1) pp. 43-53, Taylor & Francis

