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Abstract

Pulsed Melodic Affective Processing (PMAP) is a method for the processing of artificial emotions in affective computing.
PMAP is a data stream designed to be listened to, as well as computed with. The affective state is represented by num-

bers that are analogues of musical features, rather than by a binary stream. Previous affective computation has been

done with emotion category indices, or real numbers representing various emotional dimensions. PMAP data can be
generated directly by sound (e.g. heart rates or key-press speeds) and turned directly into music with minimal transfor-

mation. This is because PMAP data is music and computations done with PMAP data are computations done with music.

This is important because PMAP is constructed so that the emotion that its data represents at the computational level
will be similar to the emotion that a person ‘‘listening’’ to the PMAP melody hears. Thus, PMAP can be used to calculate

‘‘feelings’’ and the result data will ‘‘sound like’’ the feelings calculated. PMAP can be compared to neural spike streams,

but ones in which pulse heights and rates encode affective information. This paper illustrates PMAP in a range of simula-
tions. In a multi-agent simulation, initial results support that an affective multi-robot security system could use PMAP to

provide a basic control mechanism for ‘‘search-and-destroy’’. Results of fitting a musical neural network with gradient

descent to help solve a text emotional detection problem are also presented. The paper concludes by discussing how
PMAP may be applicable in the stock markets, using a simplified order book simulation.
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1. Introduction

This paper is an investigation into the use of melodies as a

tool for affective computation and communication in artifi-

cial systems, through a connectionist architecture, a simu-

lation of a robot security team, and a stock market tool.

Such an idea is not so unusual when one considers the data

stream in spiking neural networks (SNNs). SNNs have

been studied both as artificial entities and as part of biolo-

gical neural networks in the brain. These are networks of

biological or artificial neurons whose internal signals are

made up of spike or pulse trains that propagate through the

network in time. Bohte et al.1 have developed a back-

propagation algorithm for artificial SNNs. Back-propaga-

tion is one of the key machine learning algorithms used to

develop neural networks that can respond intelligently. It

is an established practice for scientists to listen to ampli-

fied neural spike trains via loudspeakers as a method of

navigating the location of an electrode in the brain,2 and it

is interesting to note that a series of timed pulses with dif-

fering heights can be naturally encoded by one of the most

common musical representations used in computers: the

Musical Instrument Digital Interface (MIDI).3 In its sim-

plest form MIDI encodes a melody, which consists of

note timing and note pitch information. In this paper we

argue that melodies can be viewed as functional and
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recreational – they can fulfill the function of encoding an

artificial emotional state, in a form that can be used in

affective computation tasks directly expressible to human

beings (or indeed to other machines). The basis of the data

stream used in this paper for processing is a pulse stream

in which the pulse rate encodes tempo, and the pulse

height encodes pitch.

1.1. Uses and novelty of Pulsed Melodic Affective

Processing

Before explaining the motivations behind Pulsed Melodic

Affective Processing (PMAP) in more detail, an overview

of its functionality will be given. Similarly, the novelty of

that functionality will be summarized. PMAP provides a

method for the processing of artificial emotions that is use-

ful in affective computing – for example combining emo-

tional readings for input or output, making decisions based

on that data or providing an artificial agent with simulated

emotions to improve their computation abilities. In terms

of novelty, PMAP is novel in that it is a data stream that

can be listened to, as well as computed with. Affective

state is represented by numbers that are analogues of musi-

cal features, rather than by a discrete binary stream.

Previous work on affective computation has been done

with normal data carrying techniques – for example emo-

tion category index, a real number representing positivity

of emotion, etc.

The encoding of PMAP is designed to provide extra

utility – PMAP data can be generated directly by sound

and turned directly into sound. Thus, rhythms such as heart

rates or key-press speeds can be directly turned into PMAP

data; PMAP data can be directly turned into music with

minimal transformation. This is because PMAP data is

music and computations done with PMAP data are compu-

tations done with music. Why is this important? Because

PMAP is constructed so that the emotion that a PMAP data

stream represents in the computation engine will be similar

to the emotion that a person ‘‘listening’’ to the PMAP-

equivalent melody would be. So PMAP can be used to cal-

culate ‘‘feelings’’ and the resulting data will ‘‘sound like’’

the feelings calculated. This will be clarified over the

course of this paper.

Due to the novelty of the PMAP approach, the structure

of this paper involves providing multiple examples of the

ability of melodies to be used in machine learning and pro-

cessing. This does not follow the normal approach taken

with machine learning, communications or unconventional

computation for validation and comparison. For example,

the musical neural network (MNN) demonstration does

not include creating a formal description of the network

and then rigorously demonstrating it in comparison to pre-

vious machine learning methods. This is for two reasons:

lack of space and lack of comparable approaches. It is felt

that such a novel approach needs to be shown to be at least

relevant in multiple applications; hence, there is insuffi-

cient room to develop and demonstrate validations for all

of the three demonstration areas presented later. Also,

there is no basis for comparison. MNN methodologies are

almost certainly less efficient than non-melody based com-

putation equivalent. The same can be said of the other

examples demonstrated in the paper. The positive argu-

ment is that they, and the other PMAP approaches, provide

a human–computer interaction (HCI) advantage in addi-

tion to their computational ability. There are no other com-

putation approaches that do this, hence no meaningful

comparisons are possible without controlled listener eva-

luation results to determine how well the PMAP streams

represent the elements of the affective computations.

However before doing these, it is first necessary to investi-

gate if affective melodies are indeed useable in multiple

affective applications.

In the previous subsection it was described how this

paper is motivated by similarities between MIDI-type

structures and the pulsed-processing4 computation found

in artificial and biological systems. It is further motivated

by three other key elements that will now be examined: (i)

the increasing prevalence of the simulation and communi-

cation of affective states by artificial and human agents/

nodes; (ii) the view of music as the ‘‘language of emo-

tions’’; (iii) the concept of audio-display of non-audio

data.

1.2. Affective processing and communication

It has been shown that affective states (emotions) play a

vital role in human cognitive processing and expression.5

1. Universal and enhanced communication: two peo-

ple who speak different languages are still able to

communicate basic states such as happy, sad, angry

and fearful.

2. Internal behavioral modification: a person’s inter-

nal emotional state will affect the planning paths

they take. For example, affectivity can reduce the

number of possible strategies in certain situations

– if there is a snake in the grass, fear will cause

you to only use navigation strategies that allow

you to look down and walk quietly. Also pre- and

de-emphasizing certain responses such that, for

example, if a tiger is chasing you fear will make

you keep running and not get distracted by a beau-

tiful sunset, a pebble in your path, etc.

3. Robust response: in extreme situations the affec-

tive reactions can bypass more complex cortical

responses allowing for a quicker reaction, or allow-

ing the person to respond to emergencies when not

able to think clearly – for example when very tired,

in severe pain, and so on.
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As a result, affective state processing has been incorporated

into robotics and multi-agent systems (MASs).6 MASs are

groups of agents where each agent is a digital entity that

can interact with other agents to solve problems as a group,

although not necessarily in an explicitly co-ordinated way.

What often separates agent-based approaches from normal

object-oriented or modular systems is their emergent

behavior.7 The solution of the problem tackled by the

agents is often generated in an unexpected way due to their

complex interactional dynamics, although individual agents

may not be that complex.

A further reason in relation to point (1) above and HCI

studies is that emotion may help machines to interact with

and model humans more seamlessly and accurately.8 So

representation of simulating affective states is an active

area of research. The dimensional approach to specifying

emotional state is one common approach. It utilizes an

n-dimensional space made up of emotion ‘‘factors’’. Any

emotion can be plotted as some combination of these fac-

tors. For example, in many emotional music systems9 two

dimensions are used: Valence and Arousal. In this model,

emotions can be plotted on a graph (see Figure 1) with the

first dimension being how positive or negative the emotion

is (Valence), and the second dimension being how intense

the physical arousal of the emotion is (Arousal). For exam-

ple ‘‘Happy’’ is a high-valence, high-arousal affective

state, and ‘‘Stressed’’ is a low-valence high-arousal state.

1.3. Music and emotion

There have been a number of questionnaire studies done

that support the argument that music communicates emo-

tions.10 Previous research11 has suggested that a main

indicator of valence is musical key mode. A major key

mode implies higher valence, while minor key mode

implies lower valence. For example the galloping

‘‘William Tell Overture’’ by G Rossini opens in a major

key and is a happy piece – that is, higher valence, whereas

the first movement of LV Beethoven’s Symphony No. 5 is

mostly in a minor key, and although it can be played at

the same speed as the William Tell Overture, feels much

more brooding and low valence. This is significant

because of its mostly minor key mode. It has also been

shown that tempo is a prime indicator of arousal, with

high tempo indicating higher arousal, and low tempo indi-

cating low arousal. For example, Beethoven’s first move-

ment above is often played Allegro (fast). Compare this to

his famous piano piece ‘‘Moonlight Sonata’’ – also minor

key, but marked Adagio for slow. The piano piece has a

melancholic feel. As well as being low valence, it is low

arousal because of its low tempo.

1.4. Sonification

Sonification12 involves representing non-musical data in

audio form to aid its understanding. Common forms of

sonification include Geiger Counters and Heart Rate moni-

tors. Sonification research has included tools for using

music to debug programs,13 sonify activity in computer

networks14 and to give insight into stock market move-

ments.15 In the past, sonification has been used as an extra

module attached to the output of the system under

question.

A key aim of PMAP is to allow sonification in affective

systems at any point in the processing path within the sys-

tem. For example, between two neurons in an artificial

neural network (ANN), or between two agents in a MAS,

or between two processing modules within a single agent.

The aim is to give the engineer or user quicker and more

intuitive insight into what is occurring within the commu-

nication or processing path in simulated emotion systems

by actually using simple music itself for processing and

communication.

There are already systems that can take the underlying

binary data and protocols in a network and map them onto

musical features.16 However, PMAP is the only data pro-

cessing model currently that is its own sonification and

requires no significant mapping for sonifying. This is

because PMAP data is limited to use in affective commu-

nications and processing where music can be both data

and sonification simultaneously. PMAP is not a new soni-

fication algorithm; rather it is a new data representation

and processing approach that is already in a sonified form.

This means that no conversion is needed between the

actually processing/communication stream and the listen-

ing user – except perhaps downsampling. It also allows for

the utilization of such musical features as harmony and

timing synchronization to be incorporated into the

Figure 1. The Valence/Arousal model of emotion, from Kirke

and Miranda.9
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monitoring when multiple modules/agents are being moni-

tored simultaneously (although these capabilities are not

examined here).

2. Pulsed Melodic Affective Processing

representation of affective state

In PMAP the data stream representing affective state is a

stream of pulses. The pulses are transmitted at a variable

rate. This can be compared to the variable rate of pulses in

biological neural networks in the brain, with such pulse

rates being considered as encoding information. In PMAP

this pulse rate specifically encodes a representation of the

arousal of an affective state. A higher pulse rate is essen-

tially a series of events at a high tempo (hence high arou-

sal), whereas a lower pulse rate is a series of events at a

low tempo (hence low arousal).

In addition, the PMAP pulses can have variable heights

with 12 possible levels. For example, 12 different voltage

levels for a low level stream, or 12 different integer values

for a stream embedded in some sort of data structure. The

purpose of pulse height is to represent the valence of an

affective state, as follows. Each level represents one of the

musical notes C, Db, D, Eb, E, F, Gb, G, Ab, A, Bb, B.

For example 1mV could be C, 2mV be Db, 4mV be Eb,

etc. We will simply use integers here to represent the notes

(i.e. 1 for C, 2 for Db, 4 for Eb, etc.). These note values

are designed to represent a valence (positivity or negativity

of emotion). This is because, in the key of C, pulse streams

made up of only the notes C, D, E, F, G, A, B are the notes

of the key C major, and so will be heard as having a major

key mode – that is, positive valence. However, streams

made up of C, D, Eb, F, G, Ab, Bb are the notes of the key

C minor, and so will be heard as having a minor key mode

– that is, negative valence.

For example, a PMAP stream of say [C, Bb, Eb, C, D,

F, Eb, Ab, G, C] (i.e. [1, 11, 4, 1, 3, 6, 4, 9, 8, 1]) would be

principally negative valence because it is mainly minor

key mode. However, [C, B, E, C, D, F, E, A, G, C] (i.e. [1,

12, 5, 1, 3, 6, 5, 10, 8, 1]) would be seen as principally pos-

itive valence. In addition, the arousal of the pulse stream

would be encoded in the rate at which the pulses were

transmitted. So if [1, 12, 5, 1, 3, 6, 5, 10, 8, 1] was trans-

mitted at a high rate, it would be high arousal and high

valence – that is, a stream representing ‘‘happy’’ (see

Figure 1); at a low rate it would be low arousal and high

valence – that is, a stream representing ‘‘relaxed’’ or ‘‘ten-

der’’ (Figure 1). However, if [1, 11, 4, 1, 3, 6, 4, 9, 8, 1]

was transmitted at a low pulse rate then it will be low arou-

sal and low valence – that is, a stream representing ‘‘sad’’.

Note that [1, 12, 5, 1, 3, 6, 5, 10, 8, 1] and [3, 12, 1, 5,

1, 1, 5, 8, 10, 6] both represent high valence (i.e. are both

major key melodies in C). This ambiguity has a potential

extra use. If there are two modules or elements both with

the same affective state, the different note groups that

make up that state representation can be unique to the

object generating them. This allows other objects, and

human listeners, to identify where the affective data is

coming from.

In non-simulated systems the PMAP data would be a

stream of pulses. In fact in the first example below, a

pulse-based data stream (MIDI) is used directly. However,

in performing the analysis on PMAP for simulation in the

second simulation, it would be convenient to utilize a

parametric form to represent the data stream form. The

parametric form represents a stream with a tempo-value

variable and a key-mode-value variable. The tempo-value

is a real number varying between 0 (minimum pulse rate)

and 1 (maximum pulse rate). The key-mode-value is an

integer varying between 23 (maximally minor) and 3

(maximally major).

3. Musical neural network example

This first example of the use of PMAP will focus on how

PMAP streams can represent non-musical data as part of a

machine learning algorithm. It will not be used to demon-

strate the sonification abilities of PMAP explicitly but to

show that PMAP can be used for non-musical computa-

tions. The example will utilize a form of simple ANN.

ANNs are computational models inspired by the function

and structure of neural networks in the biological brain.

They are a connected collection of artificial neurons that

processes information through an input layer and produce

the results of the processing through an output layer. An

ANN is usually an adaptive system that changes its beha-

vior during a learning phase. Many adaption methods uti-

lize a method known as gradient descent.17 This learning is

used to develop a model linking the inputs and outputs so

as to create a desired response. In recent years, there has

also been work in making the neurons more realistic so

they take spike trains, similar to those found in the brain,

as input signals. As has been mentioned, these are known

as SNNs, and learning algorithms have been developed for

SNNs as well. The use of timed pulses in SNNs supports

an investigation into PMAP pulses in ANNs; in particular,

a neural network application in which emotion and rhythm

are core elements. One such example is now presented.

A form of learning ANN that uses PMAP is first

described. These artificial networks take as input, and use

as their processing data, pulsed melodies. A musical neu-

ron (muron – pronounced MEW-RON) is shown in

Figure 2. The muron in this example has two inputs,

although a muron can have more than this. Each input is a

PMAP melody, and the output is a PMAP melody. The

weights on the input w1 and w2 are two-element vectors

that define a key mode transposition and a tempo change,

respectively. A positive Rk will transpose more input tune
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notes into a major key mode, and a negative one will trans-

pose more input notes into a minor key mode. Similarly, a

positive Dt will increase the tempo of the tune, and a nega-

tive Dt will reduce the tempo. The muron combines input

tunes by superimposing the spikes in time, that is, overlay-

ing them. Any notes that occur at the same time are com-

bined into a single note with the highest pitch being

retained. This retaining rule is fairly arbitrary but some

form of non-random decision should be made in this sce-

nario (future work will examine if the ‘‘high retain’’ rule

adds any significant bias). Murons can be combined into

networks, called MNNs. The learning of a muron involves

setting the weights to give the desired output tunes for the

given input tunes. Applications for which PMAP is most

efficiently used are those that naturally utilize temporal or

affective data (or for which internal and external sonifica-

tion is particularly important).

One such system will now be proposed for the estima-

tion of affective content of real-time typing. The system is

inspired by research by the authors on analyzing

QWERTY keyboard typing. This approach is based on the

way that piano keyboard playing can be computer-

analyzed to estimate the emotional communication of the

piano player.18 It has been found by researchers that the

mood a musical performer is trying to communicate

affects not only their basic playing tempo, but also the

structure of the hierarchical patterns of the musical timing

of their performance.19 Similarly, we propose that a per-

son’s mood will affect not only their typing rate,18 but also

their relative word rate and paragraph rate, and so forth.

In Kirke et al.,18 a real-time system was developed to

analyze the local tempo of typing and estimate affective

state. The MNN/PMAP version demonstrated in this paper

is not real time, and does not take into account base typing

speed: it focuses on relative rates of offline pre-typed data.

These simplifications are for the sake of expedient simula-

tion and experiments. However, it does implicitly analyze

hierarchies of tempo patterns, which the system in Kirke

et al.18 did not.

The proposed architecture for the emotion estimation is

shown in Figure 3. It has two layers known as the input

and output layers. The input layer has four murons –

which generate notes. The idea of these four inputs is they

represent four levels of the timing hierarchy in language.

The lowest level is letters, whose rate is not measured in

the demo. These letters make up words, which are usually

separated by a space. The words make up phrases. In an

ideal system the syntax hierarchy would be used to define

phrases. However for simplification here, an approxima-

tion is made using commas. This will reduce the accuracy

of the results but allows for a simpler demonstration of the

learning capacity of the network. So, phrases will be

defined here as being punctuated by commas. These

phrases make up sentences (separated by full stops), and

sentences make up paragraphs (separated by a paragraph

end). So the tempo of the tune’s output from these four

murons represents the relative word rate, phrase rate, sen-

tence rate and paragraph rate of the text. Note that for data

from an internet-based messenger application, the para-

graph rate will represent the rate at which messages are

sent. Every time a space character is detected, then a note

is output by the SPACE Flag. If a comma is detected then

a musical note is output by the COMMA Flag, if a full

stop/period is detected then the FULL STOP (PERIOD)

Flag generates a note, and if an end of paragraph is

detected then a note is output by the PARAGRAPH Flag.

The ‘‘carrier melodies’’ used in the input layer are a

series of constantly rising pitches. The precise pitches in

these melodies are not important – rather it is having a

variety of pitches at a neutral tempo, so that they can be

transformed through different affective states. The desired

output of the MNN will be a tune that represents an affec-

tive estimate of the text content. A happy tune means the

text structure is happy; likewise a sad tune means the text

is sad. Normally, neural networks are trained using a num-

ber of methods, most commonly some variation of gradi-

ent descent, a type of algorithm that attempts to change the

network parameters so as to lower the difference between

w3 = [1, 1.4]

w1 = [0, 1.4]

w2 = [2, 1.8]

w4 = [1, 0.5]
PARAGRAPH

Flag

FULL STOP 

(PERIOD) Flag

COMMA Flag

SPACE Flag

Figure 3. Four input musical neural networks for Offline Text

Affective Analysis with final learned weight values.

w1 = [R1, D1]

w2 = [R2, D2]

Input 1

Input 2

Output

Figure 2. A muron with two inputs with weight vectors w1 and

w2, respectively.
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the actual output and the desired output. A gradient des-

cent algorithm is used here. w1, w2, w3, w4 are all initia-

lized to [0,1] = [key mode sub-weight, tempo sub-weight].

Thus, initially the weights have no effect on the key mode,

and multiply tempo by 1, that is, they have no effect over

all. The final learned weights are also shown in Figure 3.

Note, in this simulation actual tunes are used. In fact, the

Matlab MIDI toolbox is used.

To train the neural network, rather than using live typ-

ing, a series of pre-typed documents were sourced from the

internet. This is possible because it is not the character typ-

ing rate but the relative rates in the text hierarchy that are

being utilized. The documents are a record of relative typ-

ing rates. The documents in the training set were selected

from internet-posted personal or news stories that were

clearly summarized as sad or happy stories. A total of 15

sad and 15 happy stories were sampled. The happy and sad

tunes are defined respectively as the targets: a tempo of 90

BPM and a major key mode, and a tempo of 30 BPM and

a minor key mode.

At each step the learning algorithm selects a training

document. Then it selects one of w1, w2, w3 or w4. Then

the algorithm selects either the key mode or the tempo

sub-weight. It then performs a single one-step gradient des-

cent based on whether the document is defined as Happy

or Sad (and thus whether the required output tune is meant

to be Happy or Sad). The size of the one step is defined by

a learning rate, set separately for tempo and for key mode.

The key mode was estimated using a modified key finding

algorithm20 that gave a value of 3 for maximally major

and 23 for maximally minor. The tempo was measured in

beats per minute. Before training, the initial average error

rate across the 30 documents was calculated. The initial

average error was 3.4 for key mode, and 30 for tempo.

After the 1920 step iterations of learning the average

errors reduced to 1.2 for the key mode, and 14.1 for tempo.

These results are described in more detail in Table 1, split

by valence (happy or sad). Note that these are in-sample

errors for a small population of 30 documents. However,

what is interesting is that there is clearly a significant error

reduction due to gradient descent. This shows that it is pos-

sible to fit the parameters of a musical combination unit (a

muron) so as to combine musical inputs and give an affec-

tively representative musical output, and address a non-

musical problem. As a practical example, this system could

be embedded as music into messenger software to give the

user affective indications through sound.

It can be seen in Table 1 that the mean tempo error for

happy documents (target 90 BPM) is 28.2 BPM. This large

error is due to an issue similar to linear separability in nor-

mal ANNs,17 although it is beyond the scope of this paper

to go into the details of the separability problem. One way

of understanding it is to consider that the muron is approx-

imately adding tempos linearly. So when it tries to learn

two tempos it will focus on one more than the other – in

this case the sad tempo. In standard ANNs, the linear

separability problem can be overcome by adding another

layer of neurons after the input layer. The difficulty that

arises then is that gradient descent becomes more com-

plex. This problem has been solved in standard ANNs

using the back-propagation algorithm mentioned earlier.

Hence, adding a hidden layer of murons may well help to

reduce the happy error significantly if some form of back-

propagation can be developed for MNNs, in the same way

as it has been developed for SNNs.

So having demonstrated the use of music streams to

model a non-musical problem, what benefits can the use

of PMAP give us for this particular application? A key

benefit of PMAP is the insight it can give to the internal

functioning of an affective circuit, using a simple sonic

approach. To gain insight into the internal functioning of

the above MNN one simply places a sonic probe at a point

in the network one wishes to analyze, and the results can

be auralized. In this case the situation is simpler as the

neural network only has two layers, so analysis would be

simple even without PMAP. Therefore, as was mentioned

at the beginning of this section, the above example is used

primarily to demonstrate the way that PMAP streams can

represent and adapt to non-musical data. However, as was

discussed earlier, having more than two layers in a MNN

may be helpful. It has been found that understanding the

functioning of the middle layer in standard three-layer

neural networks is not always simple.17 So if a three-layer

PMAP approach could be developed, as we hope to

demonstrate in future work, then the extra transparency of

the PMAP auto-sonification may prove to be more

helpful.

4. Multi-agent simulation

Another simple application is now introduced. A software

MAS is used here to model a multi-robot system.21 It pro-

vides a method for examining the interactions in the initial

design of a robot team, without the money or time

Table 1. Mean error of musical neural network after 1920 iterations of gradient descent.

Key target Mean key error Tempo target (BPM) Mean tempo error (BPM)

Happy docs 3 0.8 90 28.2
Sad docs –3 1.6 30 0
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investment needed to test with hardware. The below

describes a multi-robot security system being simulated as

a software MAS. Like many software multi-agent simula-

tions, it is highly simplified in its functionality compared

to an actual physical system.

Why would a multi-robot security system need an

affective state? One function of affective states in biologi-

cal systems is that they provide an additional motivation

to action when the organism is damaged or in an extreme

state.22 For example, an injured person will still try to

defend themselves or escape if attacked such that they are

unable to think clearly in a rational way. An affective sub-

system for a robot who is a member of a security team is

now examined; one that can ‘‘kick in’’ or over-ride if the

primary decision-making functions are damaged or dead-

locked. A group of mobile security robots with built-in

weapons are placed in a potentially hostile environment

and required to search the environment for intruders, and,

upon finding intruders, to move towards them and fire on

them. The PMAP affective subsystem shown below is

designed to keep friendly robots apart (so as to maximize

the coverage of the space), to make them move towards

intruders and to make them fire when intruders are

detected. To achieve this, a simple circuit of PMAP gates

– shown in Figure 4 – is used. These gates are also intro-

duced below.

Note that the PMAP approach is not being used here for

the robots to communicate with each other. It is being used

to allow each individual robot to process affective informa-

tion internally. It is assumed that the robot has two layers

of processing: a more complex symbolic layer used when

the robot is fully functional and, in case that layer is dam-

aged, a simpler parallel lower-level layer. The use of an

affective processing ‘‘back-up’’ layer echoes that found in

biological organisms, as mentioned earlier. It also provides

for a continuous or fuzzy response to input data, whereas

simply using a low-level logic layer may be constrained to

basic on/off processing. Finally, it is useful for a robot

security system to be able to provide knowledge of its

affective state processing: the PMAP streams, as opposed

to simple real-numbered representations of robot emotional

state, can be made audible to give a user quick, simple and

eyes-free insight into the function of the various elements

of the robots’ internal modules – perhaps at the design or

maintenance stage. The audibility of PMAP could also be

of use during live operation, for example if the team’s

human commander is in the field and needs to keep hands

and eyes free to deal with intruders. The commander can

have the PMAP streams of the security robots’ affective

states sent to a radio ear-piece. This would allow eyes-free

monitoring of the team state. Normally the provision of

such eyes-free insight would require a sonification algo-

rithm to be applied to the area of the robot that the user

wished to analyze. However PMAP streams, by their very

nature, encode that information as music already.

4.1. Music gates

Three possible PMAP gates will now be examined based

on AND, OR and NOT logic gates. The PMAP versions

of these are, respectively, MAND, MOR and MNOT (pro-

nounced ‘‘emm-not’’). So for a given stream, the PMAP-

value can be written as mi = [ki, ti] with key-value ki and

tempo-value ti. The definitions of the musical gates are

(for two streams m1 and m2)

MNOT mð Þ= �k, 1� t½ � ð1Þ

m1 MAND m2 = minimum k1, k2ð Þ, minimum t1, t2ð Þ½ �

ð2Þ

m1 MOR m2 = maximum k1, k2ð Þ, maximum t1, t2ð Þ½ �

ð3Þ

These use a similar approach to fuzzy logic.23 MNOT is the

simplest – it simply inverts the key mode and tempo –

minor becomes major and fast becomes slow, and vice

versa. The best way to get some insight into what the affec-

tive function of the music gates is, is it to utilize music

‘‘truth tables’’, which will be called Affect Tables here. In

these, four representative state labels – based on the PMAP-

value system – are used to represent the four quadrants of

the PMAP-value table: ‘‘Sad’’ for [–3,0], ‘‘Stressed’’ for [–

3,1], ‘‘Relaxed’’ for [3,0] and ‘‘Happy’’ for [3,1]. Table 2

shows the music tables for MOR and MNOT.

Taking the MAND of two melodies, low tempos and

minor keys will dominate the output. Taking the MOR of

two melodies, high tempos and major keys will dominate

the output. To give another perspective, the MAND of the

Detect 

Other WEAPON

Friend 

Flag

MNOT

MAND

MOR MOTOR

Figure 4. Affective subsystem for security multi-robot system.
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melodies from Beethoven’s Moonlight Sonata (minor key)

and the William Tell Overture (major key), the result

would be mainly influenced by Moonlight Sonata.

However, if they are MOR’d, then the William Tell

Overture key mode would dominate. The MNOT of the

William Tell Overture would be a minor key version. The

MNOT of Moonlight Sonata would be a faster major key

version. It is also possible to construct more complex

music functions. For example, MXOR (pronounced

‘‘mex-or’’):

m1 MXOR m2 =(m1MAND MNOT m2ð Þ)
MOR (MNOT m1ð ÞMAND m2) ð4Þ

The actual application of these music gates depends on

the level at which they are to be utilized. The underlying

data of PMAP (putting aside for a moment the PMAP-

value representation used above) is a stream of pulses of

different heights and pulse rates. At the digital circuit level

this can be compared to VLSI hardware SNN systems24 or

VLSI pulse computation systems. As has been mentioned,

a key difference is that the pulse height varies in PMAP,

and that specific pulse heights must be distinguished for

computation to be done. Assuming this can be achieved

then the gates would be feasible in hardware. It is probable

that each music gate would need to be constructed from

multiple VLSI elements due to the detection and compari-

son of pulse heights necessary.

The other way of applying at a low level, but not in

hardware, would be through the use of a virtual/simulated

machine. So the underlying hardware would use standard

logic gates or perhaps standard spiking neurons. The idea

of a virtual/simulated machine may at first seem contradic-

tory, but one only needs to think back 20 years when the

idea of the Java Virtual Machine would have been unfeasi-

ble given current processing speeds then. In 5–10 years

current hardware speeds may be achievable by emulation;

should PMAP-type approaches prove useful enough, they

would provide one possible implementation.

As mentioned, PMAP gates function in ways similar to

fuzzy logic. To analyze a fuzzy logic circuit in an eyes-

free way would normally require a probe to be inserted at

points in the logic circuit and that probe information to

then be translated into sound through a sonification algo-

rithm. However, circuits built from the above music gates

can be analyzed by simply listening to the data stream. At

any point in the circuit an audio probe can be inserted to

give a sense of the affective data at that junction in an

audible way.

4.2. MAS simulation of a multi-robot system

The modules for the PMAP affective subsystem are shown

in Figure 4: ‘‘DetectOther’’, ‘‘FriendFlag’’, ‘‘MOTOR’’

and ‘‘WEAPON’’. ‘‘DetectOther’’ emits a regular minor

mode melody; then every time another agent (human or

robot) is detected within firing range, a major key mode

melody is emitted. This is because detecting another agent

means that the robots are not spread out enough if it is a

friendly, or it is an enemy if not. ‘‘FriendFlag’’ emits a

regular minor key mode melody except for one condition.

Other authorized ‘‘friends’’ are identifiable (visually or by

radio-frequency identification [RFI]) and when an agent is

detected within range – if it is an authorized friendly – this

module emits a major key mode melody. The ‘‘MOTOR’’

unit, when it receives a major key note, moves the robot

forward one step. When it receives a minor key note, it

moves the robot back one step. The ‘‘WEAPON’’ unit,

when it receives a minor key note, fires one round. The

weapon and motor system is written symbolically in

Equations (5) and (6):

WEAPON=DetectOther MAND MNOT FriendFlagð Þ

ð5Þ

MOTOR=WEAPON MOR MNOT DetectOtherð Þ

ð6Þ

Table 2. Music tables for MOR and MNOT.

MOR MNOT

State label 1 State
label 2

KT-value 1 KT- value 2 MOR value State
label

State label KT-value MNOT
value

State
label

Sad Sad –3,0 –3,0 –3,0 Sad Sad –3,0 3,1 Happy
Sad Stressed –3,0 –3,1 –3,1 Stressed Stressed –3,1 3,0 Relaxed
Sad Relaxed –3,0 3,0 3,0 Sad Relaxed 3,0 –3,1 Stressed
Sad Happy –3,0 3,1 3,1 Happy Happy 3,1 –3,0 Sad
Stressed Stressed –3,1 –3,1 –3,1 Stressed
Stressed Relaxed –3,1 3,0 3,1 Happy
Stressed Happy –3,1 3,1 3,1 Happy
Relaxed Relaxed 3,0 3,0 3,0 Relaxed
Relaxed Happy 3,0 3,1 3,1 Happy
Happy Happy 3,1 3,1 3,1 Happy
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Calculating (5) and (6), using Equations (1) and (2) from

earlier, gives the theoretical results in Table 3. Only five

rows of the table are shown as the other states will not

occur in the real-world situation. The five rows have the

following interpretations: (a) if alone continue to patrol

and explore; (b) if a distant intruder is detected move

towards it fast and start firing slowly; (c) if a distant

friendly robot is detected move away so as to patrol a dif-

ferent area of the space; (d) if enemy is close-by move

slowly (to stay in its vicinity) and fire fast; (e) if a close

friend is detected move away. This should mainly happen

(because of row c) when the robot team are initially

deployed and they are bunched together, hence slow

movement to prevent collision.

To test in a MAS, four security robots are used, imple-

menting the PMAP-value processing described earlier,

rather than having actual melodies within the processing

system. The security robots using the PMAP affective sub-

system are called ‘‘F-Robots’’ (friendly robots). The

movement space is limited by a border and when an

F-Robot hits this border, it moves back a step and tries

another movement. Their movements include a perturba-

tion system that adds a random nudge to the robot move-

ment, on top of the affectively controlled movement

described earlier. The simulation space is 50 units by 50

units. An F-Robot can move by up to eight units at a time,

backwards or forwards. Its range (for firing and for detec-

tion by others) is 10 units. Its PMAP minimum tempo is

100 BPM, and its maximum is 200 BPM. These are

encoded as a tempo value of 0.5 and 1, respectively.

Stationary unauthorized intruders are placed at fixed posi-

tions (10,10), (20,20) and (30,30).

The F-robots are placed at initial positions (10,5),

(20,5), (30,5), (40,5), (50,5), that is, they start at the bot-

tom of the space. The system is run for 2000 movement

cycles – in each movement cycle each of the four F-

Robots can move. Thirty simulations were run and the

average distance of the F-Robots to the immobile intruders

was calculated. Also the average distances between F-

Robots were calculated. These were done with a detection

range of 10 and a range of 0. A range of 0 effectively

switches off the musical processing. The results are shown

in Table 4. It can be seen that the affective subsystem

keeps the F-Robots apart, encouraging them to search dif-

ferent parts of the space. In fact it increases the average

distance between them by 72%. Similarly, the music logic

system increases the likelihood of the F-Robots moving

towards intruders. The average distance between the F-

Robots and the enemies decreases by 21% thanks to the

melodic subsystem. These results are fairly robust, with

coefficients of variation between 4% and 2%, across the

results. Figures 5 and 6 show two simulation runs, with

each F-Robot’s trace represented by a different color, and

each fixed intruder shown by an ‘‘X’’.

It was found that the WEAPON firing rate had a very

strong tendency to be higher as enemies were closer. The

maximum tempo of Robot 1’s firing (just under maximum

tempo 1) or firing rate is achieved when the distance is at

its minimum. Similarly, the minimum firing rate occurs at

distance 10 (the detection range) in most cases. In fact, the

correlation between the two is 20.98, which is very high.

This shows that PMAP allows similar flexibility to fuzzy

logic, in that the gun rate is controlled fuzzily from mini-

mum to maximum.

How might a user utilize the PMAP streams to learn

about the robot’s behavior sonically? Suppose the user

wants to analyze the behavior of the lower MOR gate

shown in Figure 4. Perhaps they want to re-design the

robot affective system and want to test the MOR gate

gives them the result they want based on certain inputs. Or

Table 3. Theoretical effects of affective subsystem.

Detect
other

Friend
flag

Detect
other – value

Friend
flag – value

MNOT
(friend
flag)

MAND
Detect
other

WEAPON MNOT
(Detect
other)

MOR
WEAPON

MOTOR

Sad Sad –3,0 –3,0 3,1 –3,0 Inactive 3,1 3,1 Fast forwards
Relaxed Sad 3,0 –3,0 3,1 3,0 Firing –3,1 3,1 Fast forwards
Relaxed Relaxed 3,0 3,0 –3,1 –3,0 Inactive –3,1 –3,0 Slow back
Happy Stressed 3,1 –3,1 3,0 3,0 Firing –3,0 3,0 Slow forwards
Happy Happy 3,1 3,1 –3,0 –3,0 Inactive –3,0 –3,0 Slow back

Table 4. Results for robot affective subsystem.

Range Avg distance between F-Robots Std deviation Average distance of F-Robots from an intruder Std deviation

0 7.6 0.5 30.4 0.3
10 13.1 0.5 25.2 0.4
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it may be because they think there is a fault in the system

because it is damaged, and want to test this part of the cir-

cuit. In a PMAP system the user could insert an audio

probe and listen to the output of the MOR gate. As has

been mentioned, in this particular simulation the PMAP-

value model is being used. Hence, unlike in the previous

MNN simulation, for convenience it is real-number repre-

sentations of the musical state that are being transmitted

through the circuit. However, these can easily be turned

into sound in this simulation because the two numbers

being transmitted represent key mode and tempo. Thus, if

each of the four robots is assigned a distinctive motif and

it is modulated with any tempo and key-value readings

from within the circuit, a good sense of what someone

using a music probe would hear in a real PMAP version of

the robot circuit can be simulated.

Motives designed to identify a module, agent, etc., will

be called ‘‘Identive’’. The identives for the four robots

were selected as

1. [1, 2, 3, 5, 3, 2, 1] = C, Db, D, E, D, Db, C

2. [3, 5, 6, 7, 6, 5, 3] = Db, Eb, F, Gb, F, Eb, Db

3. [6, 7, 9, 1, 9, 7, 6] = F, Gb, Ab, C, Ab, Gb, F

4. [7, 9, 1, 6, 1, 9, 7] = Gb, Ab, C, F, C, Ab, Gb

Placing a simulated audio probe at the output of the

MAND gate in Figure 4 involves transforming these

motifs based on the PMAP-values of tempo and key-mode

found on the MAND output into musical motifs. Figure 7

shows the first 400 notes of MAND output in the simula-

tion in robots 1–3, in piano roll notation. For plotting

clarity, the different MAND units have been octave trans-

formed (the lowest is robot 1, the highest robot 3). It was

found that the octave separation used for visual clarity in

Figure 7 actually helped with aural perception from the

simulated audio probe. It was found that more than three

robots were not really individually perceivable when lis-

tened to together. It was also found that transforming the

tempo minimums and maximums to between 100 and 200

beats per minute and quantizing by 0.25 beats seemed to

make changes more perceivable as well.

The tempo changes, which are visible in all three

PMAP data streams in the figure, were found to be inde-

pendently audible in informal listening tests by the authors.

So the output of the MAND gate for all three robots could

be heard by directly listening to the processing stream.

What could also be heard was that the top two data streams

(of robots 2 and 3) were more in synchronization than the
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Figure 5. Simulation of security robots without Pulsed Melodic

Affective Processing. (Color online only.)
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Figure 6. Simulation of security robots with the Pulsed

Melodic Affective Processing (PMAP) system and a range of 10

units, showing a better search dispersion as a result of the

PMAP compared to Figure 5. (Color online only.)
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robots 1–3 (octave separated).
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bottom one (robot 1). The key mode was slightly harder to

discern and required more concentration. This MAND gate

output also drives the weapon module. Listening to the

audio output it became clear from the start that some of the

robots were firing and some were not. This is audible as

there was dissonance created by the different key modes

(major key mode means weapon firing, minor means not

firing). Listening more closely, the point at which robot 1

stopped firing (around beat 58 in Figure 7) was audible.

More clearly audible was the point at which robot 3 started

firing (around beat 85). Thus the state of the robot team’s

weapons, and the individual robots, was to a degree dis-

cernible from their data stream. A fuzzy logic system could

have been used to design this robot system, and then the

streams of fuzzy data converted into sound using an exter-

nal sonification algorithm. The key difference here is that

the data stream is being heard not sonified – the data

stream is its own sonification.

This is the main contribution of the PMAP approach to

the field of sonification research: PMAP is the first data

representation for processing that is its own sonification. In

the non-simulated version of this circuit, if a user wanted

to investigate the behavior of the circuit at different points,

for example the output of the MNOT gate or the MOR

gate, they could simply place their probe there and hear the

data stream directly without the need for a sonification

algorithm. Note that this has been demonstrated here on a

relatively simple circuit; as affective circuits grow increas-

ingly complex PMAP’s utility can grow as gaining insight

into a circuit’s inner functionality becomes more of an

issue without a meaningful probing approach.

Of course the complexity of real-life problems in secu-

rity and military robots goes far beyond the highly simpli-

fied examples presented in this paper and requires large

state spaces with exponential number of transitions between

them. Such systems are usually based on formal systems

that allow formal verification, that is, the robot will behave

as expected in all conditions, and on methods for providing

bounded computation and achieving tractability.

Furthermore military robots, especially weapon systems,

are sometimes time-critical applications, which require

extremely fast response times. Thus the above PMAP simu-

lation can only be viewed as a very initial demonstration of

a potential application of PMAP in multi-robot systems.

However, as processing speeds increase, and the tools of

affective computing expand in their sophistication, it would

seem that further work on developing PMAP could lead to

tractable solutions for hardware multi-robot systems.

An extension of the above robot system is to incorpo-

rate rhythmic biosignals from modern human-worn

security suits.25,26 For example, if ‘‘BioSignal’’ is a tune-

generating module whose tempo is a heart rate reading

from a security body suit, and whose key mode is based on

EEG valence readings from the reader, then the MOTOR

system could become

MOTOR=WEAPON MOR MNOT
DetectOtherð Þ MOR MNOT BioSignalð Þ ð7Þ

The music table for (7) would show that if a (human)

friend is detected whose biosignal indicates positive

valence, then the F-Robot will move away from the friend

to patrol a different area. If the friendly human’s biosignal

is negative then the robot will move towards them to aid

them.

5. Affective Market Mapping

An example of PMAP will now be given in an area where

sonification has been more extensively studied: the stock

market. The key difference in the approach below to previ-

ous studies, for example Worrall27 and Ciardi,28 is that

although it can be used purely as a form of market sonifi-

cation, this sonification’s musical notes can potentially be

used directly to make calculations about the stock market,

for example in a simple form of algorithmic trading

approach, which will be described.

There are three elements that suggest PMAP may have

potential in the stock markets: a simple market-state map-

ping (described below), the incorporation of trader, client

and news article ‘‘sentiment’’ into what is an art as well as

a science, and a natural sonification for eyes-free HCI in

busy environments. The Affective Market Mapping

(AMM) involves mapping stock movements onto a PMAP

representation. Such a mapping would allow PMAP pro-

cessing to interact with stock market data and be used for

algorithmic trading. One mapping that was initially con-

sidered was a risk/return mapping – letting risk be mapped

onto tempo, and return be mapped onto key mode. Thus a

higher risk would be represented by a more highly aroused

affective state, and a high return by a more positive affec-

tive state. However, this does not give an intuitively help-

ful result. For example it might imply that a high-arousal

high-valence stock (high risk/high return) is ‘‘happy’’.

However, this entirely depends on the risk profile of the

investor/trader. So a more flexible approach – and one that

is simpler to implement – for the AMM is

1. key mode is proportional to market imbalance;

2. tempo is proportional to number of trades per

second.

These can refer to a single stock, a group of stocks or a

whole index. Consider a single stock S. The market imbal-

ance Z in a time period dT is the total number of shares of

buying interest in the market during dT minus the total

number of shares of selling interest during dT. This infor-

mation is not publically available, but can be approxi-

mated. For example it can be approximated as in Kissell

and Glantz:29 the total number of buy-initiated sales minus

the total number of sell-initiated trades (normalized by the
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average daily volume for S); with a trade defined as buy-

initiated if it happens on an uptick in the market price of

stock S, and sell-initiated if it happens on a downtick (the

‘‘tick algorithm’’). If there are as many buyers as sellers in

stock S then it is balanced and its market imbalance Z will

be 0. If there are a large number of buyers and not enough

sellers (e.g. in the case where positive news has been

released about the stock) the imbalance will become

positive.

To generate a melody from a stock, simply take a default

stream of non-key notes at a constant or uniformly random

rate; every time there is a trade, add a major key note for a

buy-initiated trade and a minor key note for a sell-initiated

trade. So for example, if a stock is being sold off rapidly

due to bad news, it will have a negative market imbalance

and a high trading rate – which will be represented in

PMAP as a minor key and high tempo. To western listeners

this represents low valence and high arousal, often labeled

as ‘‘angry’’ or ‘‘fearful’’. Stocks trading up rapidly on good

news will have a major key and high tempo (‘‘happy’’),

stocks trading up slowly in a generally positive market will

have a low tempo and high valence (‘‘relaxed’’). The result-

ing stream from the AMM matches in the PMAP encoding

what many would consider their affective view of the stock,

and as such would sound like that to many as well.

5.1. Simulation

To examine a simple processing usage of the AMM and

PMAP, a basic algorithmic trading system will be imple-

mented. Algorithmic trading has become extremely promi-

nent in the markets in the last few years.30 The field of

behavioral finance has highlighted the importance of emo-

tions in finance and markets.31 However, we are not aware

of any such work that focuses on affectivity. To examine

this approach, a simple stock market order book simulation

has been developed. The market contains a single stock

whose initial price is $100. Orders arrive at the market at a

constant rate of one every 10 minutes. The stock has an

average daily volume of around 40,000 shares. Each trade

can be a buy or sell order with a probability p of being a

buy order and 1–p of being a sell order. The order book

can contain up to 30 buy orders and 30 sell orders. Each

order is uniformly randomly sized. The market price p(t)

evolves based on whether an order is a buy or sell order,

the order size, and a price volatility parameter:

p tð Þ= p t � 1ð Þ+ priceDriftFactor:
orderSize:orderPrice=ADV � volatility+2:r:volatility

ð8Þ

The level at which a simulated order is priced is the market

price p(t) with a certain deviation of percentage size

defined by a parameter priceFluctFactor. Once the book

has filled up with arriving orders, new orders overwrite the

oldest ones. Although in the simulation it is known pre-

cisely whether the order is a buy or sell order, the tick

algorithm is still used to estimate the order side for the

AMM. The accuracy of this estimation will depend on the

size of the random price fluctuations in orders and the mar-

ket price volatility – that is, the higher the volatility and

fluctuation parameters, the less accuracy the tick algorithm

with exhibit. For the simulation detailed here volatility was

set to 0.02, priceDriftFactor to 0.005 and priceFluctFactor

to 0.001. This led to the tick algorithm being, on average,

about 75% accurate. (In other words about 75% of orders

were correctly classified.) If volatility is increased to

0.005, the accuracy drops to around 60%.

To see how this model functions with the AMM, con-

sider the prices of a month’s worth of trading shown in

Figure 8(a), where maximum order size is 1000 shares.

Figure 8. Stock price in dollars in a ‘‘neutral’’ month and in a ‘‘selling month’’ (x-axis is simulation time steps).
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This month is a ‘‘neutral’’ month – in other words, the

probability of a buy order is equal to the probability of a

sell order. Figure 8(b) shows a month where there is a con-

stant probability of 70% of a sell order arriving, and of

30% of a buy order arriving. Figure 9(a) shows a measure

representing valence calculated for this ‘‘selling month’’,

calculated using the AMM. Note that in the following dis-

cussions valence and arousal are used instead of key mode

and tempo. This is equivalent to the parametric version of

PMAP used in the earlier MAS, but differs in presentation.

Such a presentation allows the reader to more simply see

the affective relationships in the stock market data. It also

avoids the complication of explicitly constructing and ana-

lyzing a melodic stream process. Higher valences are

approximately concurrent with a more major key mode,

and the lower valences to a more clearly minor key mode.

The first thing to observe is that the valence in Figure

9(a) is usually negative, with a mean valence of 20.34.

There are five sections where it goes above 0, but this is

consistent with the existence of local maxima in the glob-

ally falling stock price in Figure 8(b).

Figure 9(b) shows a market event that begins with a

relative relaxed trading in the stock just above $100, fol-

lowed by a rapid rise in the stock price due to an increase

in buy order probability. This is followed by another

period of stable price trading just below $104, then for

some reason the stock starts to fall with increasing rapidity

back to just above $100. This is done by setting the buy

probabilities to 0.5, 0.75, 0.5, 0.25, respectively, and set-

ting average order amounts to 1000, 2000, 1500, and then

during the selling period to 1500 and then 4000. It is much

clearer to see patterns of behavior if valence is plotted

against arousal as in Figure 10. Looking now at how this

is reflected in the Affective Market Model, we can observe

Figure 10(a). To clarify this further an averaged version is

shown in Figure 10(b), averaged over 50 runs.

The stock begins at the far left of the diagram with a

low arousal and neutral valence due to the slow build of

the order book (which starts from empty). One can then

observe at least five ‘‘emotional regimes’’ that the market

moves through, as the arousal/valence line is followed by

the eye moving from the far left to the far right of the

diagram:

1. ‘‘Relaxed’’ – after the arousal builds up there is a

regime around 0.02 arousal at the left of the

diagram;

2. ‘‘Joyful’’/’’Excited’’ – this is the region of maxi-

mum valence/key-value and with significantly

increase arousal/tempo, during which the stock

price is rising more rapidly;

3. ‘‘Happy’’– the market rise is slowing down as it

approaches $104;

4. ‘‘Sad’’ – the market starts to go down slowly;

5. ‘‘Angry’’/’’Fearful’’ – at around $102.50 the stock

begins to fall rapidly.

An interesting element to observe concerning these

regimes is that they are audible since if sound is played

with the relevant key-value and tempo the music will (for

western listeners) have the affective communication

(approximately) of: ‘‘Relaxed’’, ‘‘Excited’’, ‘‘Happy’’,

‘‘Sad’’ and ‘‘Fearful’’.32

To examine how the AMM might be used in algorith-

mic trading, consider a simple rule:

If keymode . trigger then buy stock quantity propor-

tional to tempo

Figure 9. Valence of stock price in the ‘‘selling’’ month and price during ‘‘event’’ (x-axis is simulation time steps).
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If keymode \ -trigger then sell short the stock with

quantity proportional to tempo

To simplify an experiment with a rule like this, the

valence-arousal space will be utilized to approximately

represent the keymode-tempo space:

If valence . triggerV then buy stock quantity propor-

tional to tempo

If valence \ -triggerV then sell short the stock with

quantity proportional to tempo

Using this rule and the above market model, with a

valence trigger value of 0.1, trading simulations were run.

When the trigger kicked in a stock quantity of

503Arousal was traded. So an arousal of 0 would lead to

a trade of 0 shares, an arousal of 2 would lead to a trade of

100 shares. The results are shown in Table 5, where each

cell gives the average profit from 50 experiments. Results

are shown with the arousal-based trading sizes as well.

The Random strategy trades with approximately the

same frequency as the Trigger strategy but at randomized

times and random order sizes. It can be seen that the

Trigger strategy outperforms the Random strategy, and

that a full valence/arousal strategy (where trade size is

based on arousal) outperforms a valence-only strategy.

Another interesting element of the arousal-based order size

is that order sizes will tend to be closer to the immediate

market volumes, which may tend to reduce transaction

costs. Note that algorithmic strategies such as the above

could be embedded in music logic circuits and MNNs,

allowing them to interact with other PMAP functionality,

such as sentiment analysis of news text feeds.

In theory, the above stock market methodologies could

all have been derived purely based on valence and arousal,

without mentioning tempo and key mode. However,

PMAP is designed to simplify the sonification of internal

processing. So this work is designed to show another area

where PMAP can be applied, rather than to address specif-

ically how the sonification of internal processing has par-

ticular benefits in stock market computations. There is

also a benefit that stands out here in the use of PMAP – it

incorporates a sonification of the market. The melodies

provide a natural sonification of stock movements – a use-

ful factor for traders whose eyes are already too busy.28

One can also consider the harmonic relationship between

two stocks, or between a stock and the market. There may

be PMAP methods developable such that if stocks start to

create cross-dissonance where once was consonance (e.g.

one becomes more major as the other stays minor), then

this indicates a potential divergence in any correlated

behavior. The incorporation of harmonies into PMAP has

already been investigated in relation to MAS.33

6. Conclusions and future work

Through various simulations, this paper has introduced the

concept of PMAP, a complementary approach in which

Figure 10. Affective Market Model of stock event and mean Affective Market Model averaged over 50 stock events.

Table 5. Profits for the strategy.

triggerV Arousal-based
trade size?

Trigger strategy
profit

Random strategy
profit

0.6 Y $4515 $671
0.6 N $9109 –$244
0.4 Y $21,618 $17
0.4 N $18,333 $76
0.1 Y $15,609 $1843
0.1 N $18,235 –$103
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computational efficiency and power are balanced with

understandability to humans (HCI), particularly where

computation addresses rhythmic and simulated emotion

processing.

Normally, to propose a new computational model, one

needs to develop the model and validate it by solving a

real-life problem, or at least by providing a framework for

solving such a problem. Then, one needs to evaluate the

solution and compare it with other approaches for solving

the same problem. In other words, in the case of PMAP,

what problems can be solved using music streams, how

efficient are the solutions, and what are their limitations?

However, PMAP is not argued to be an efficient and uni-

versal form of Turing computation. It is argued to be the

first form of computation designed from an HCI perspec-

tive. Furthermore, it is designed for affective computation.

As a result, validation showing that it is a form of universal

computation has not been attempted. Although some form

of more formal demonstration of breadth and accuracy in

affective computation is clearly desirable, there is no uni-

versal method of doing this in affective computing. Hence,

as a first step this paper has been dedicated to showing the

approach to be potentially applicable in a series of broad

but highly simplified scenarios. The next stage of valida-

tion would be to perform listening tests to confirm that the

affective state represented in the virtual ‘‘circuitry’’ is sim-

ilar to that for western listeners. This is beyond the scope

of an already extensive report, and is part of our planned

future work.

In this paper, music gates and murons have been intro-

duced; as well as potential applications for this technology in

multi-agent/robot systems, text analysis and stock markets.

The tasks are not the most efficient or accurate solutions, but

have been a demonstration of a sound-based unified approach

addressing HCI and affective processing. In the multi-robot

security system, PMAP provided a low-level affective pro-

cessing that could continue to function if higher systems were

damaged. This processing was shown to provide a basic func-

tionality of firing on hostiles and spreading the robots more

evenly around the patrol area. It further provided implicit

methods for eyes-free monitoring of the robot teams’ beha-

viors by a human commander/controller.

In the case of the text emotion analysis system, PMAP

enabled a music-based machine learning algorithm that

provided more direct input/output routes for analysis. The

input was a series of rhythms that represented the hierarch-

ical ‘‘rhythms’’ of the text, and the output was music that

was shown to encode approximately the affective content

of the text in the majority of cases. A non-musical alterna-

tive would have been to have as input instead a series of

numbers representing the rhythms of the text at different

hierarchical levels, and then have as output a valence mea-

sure for positivity of text. This involves converting

rhythms into numbers on the input, and then converting

numbers into emotion on the output. PMAP not only

provides an ‘‘already sonified’’ output, but is the natural

representation system for such a problem because of the

rhythmic nature of input. Whether it is the most efficient

approach to machine learning is another question alto-

gether, but as has been repeatedly stated, PMAP is a com-

promise between computational efficiency and

transparency.

The final application demonstration was in an area

familiar to sonification research: the stock market. Inspired

by insights from behavioral finance, an affective transfor-

mation was defined for an order-driven market and demon-

strated in a simulation, including a simple algorithmic

trading system. Although the algorithmic trading system

simulation did not directly use musical notes or parameters

(as was the case in the previous two applications), the

valence-arousal space used in the simulation was equiva-

lent to the keymode-tempo space of parametric PMAP,

and the actual AMM was initially defined in PMAP terms

of keymode and tempo.

A key contribution of PMAP is to sonification research.

In normal circuit and network sonification, a probe needs

to be placed at the node we desire to sonify, and that data

then needs to be fed into a sonification algorithm to be

converted into meaningful sounds for the user. However

if, in the case of affective circuits and networks, the under-

lying data uses the PMAP representation, then no sonifica-

tion algorithm is needed. The data is already in the form

of a melody that represents the affective state of the data –

in other words the data representation is its own sonifica-

tion. There are systems that allow the sonification of

network data through separate data sonification algo-

rithms. These systems will take the underlying binary data

and protocols, map them onto features, and then play these

features. However, PMAP is the only data processing and

transmission model currently that is its own sonification

and requires no significant mapping. This is because

PMAP is limited to use in affective communications and

processing, and such affective states can be represented in

many cases by musical data anyway.

There are a significant number of issues to be further

addressed with PMAP, a key one being that – now initial

results have been obtained in a number of application area

simulations – how can a more formal verification be

achieved; and one which incorporates HCI testing? Others

include the following: is the rebalance between efficiency

and understanding useful and practical, and also just how

practical is sonification – can sonification more advanced

than Geiger counters, heart rate monitors, etc., really be

useful and adopted? The valence/arousal coding provides

simplicity, but is it sufficiently expressive while remaining

simple? Similarly, it needs to be considered if a different

representation than tempo/key mode might be better for

processing or transparency. PMAP also has a close rela-

tionship to fuzzy logic and SNNs – so perhaps it can be

adapted based on lessons learned in these disciplines.
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Furthermore, most low-level processing in standard com-

putation is done in hardware – so issues of how PMAP

hardware is built need to be investigated.
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