MARE 502, Advanced Topics in Computer Music

Dr Torsten Anders
Prof E R Miranda
Interdisciplinary Centre for Computer Music Research (ICCMR)
University of Plymouth
http://cmr.soc.plymouth.ac.uk/

05 November 2009
Outline of this Lecture

1. Practical Exercises
2. Amplitude and Ring Modulation
3. Frequency Modulation
4. Conclusion
Recapitulation

Questions

- Why/how does digital audio limit the maximum loudness and frequency of a signal?
Recapitulation

Questions

- Why/how does digital audio limit the maximum loudness and frequency of a signal?
- What is the purpose of Csound’s different signal rates?
Recapitulation

Questions

- Why/how does digital audio limit the maximum loudness and frequency of a signal?
- What is the purpose of Csound’s different signal rates?
- What is the difference between a harmonic and an inharmonic spectrum (analytically and perceptually)?
Recapitulation

Questions

- Why/how does digital audio limit the maximum loudness and frequency of a signal?
- What is the purpose of Csound’s different signal rates?
- What is the difference between a harmonic and an inharmonic spectrum (analytically and perceptually)?
- What is additive synthesis?
Recapitulation

Questions

- Why/how does digital audio limit the maximum loudness and frequency of a signal?
- What is the purpose of Csound’s different signal rates?
- What is the difference between a harmonic and an inharmonic spectrum (analytically and perceptually)?
- What is additive synthesis?
- Multiple wavetable synthesis can closely approximate the sound of acoustical instruments (e.g., woodwinds and brass). What are principle differences between this technique and sampling?
Exercises I

Please conduct the following exercises individually. Don’t hesitate to ask for help if necessary.

- Define a Csound orchestra containing a simple instrument that uses the `pluck` opcode (cf. Fig. 1.4 in Csound book). Check the documentation of `pluck` and make sure that a random sequence will be used for its f-table. Play a single note with this instrument.

- Change the instrument definition such that pitch and amplitude can be controlled in the score. Define a score that plays either a chord (e.g., a major triad with the frequencies 400 Hz, 500 Hz, and 600 Hz) and a scale (e.g., a major scale with the frequencies 400 Hz, 450 Hz, 500 Hz, 533 Hz, 600 Hz, 667 Hz, 750 Hz, 800 Hz). Remember that you might need to adapt the amplitude for multiple simultaneous notes.
Please conduct the following exercises individually. Don’t hesitate to ask for help if necessary.

- Change the instrument definition such that the pitch can be given as a MIDI note number (keynumber) in the score. Use the value converter `semitone` (see the documentation for its use). You can compute the frequency with the following formula $\text{refFreq} \times \text{semitone}(\text{keynumber} - \text{refKey})$. Traditionally, the reference note for tuning is Concert A (keynumber 69) tuned at 440 Hz.

- Change the instrument definition such that the `pluck` opcode is used to synthesis a drum sound (see the documentation of `pluck`, argument `imeth`). Refine the instrument such that the 'roughness factor' (more pluck or more drum sound) can be controlled in the score.
Exercises III

Additional exercise

Read Csound book Chapter 4 *Optimizing Your Csound Instruments*
Bipolar and Unipolar Signals

- Bipolar signal has both negative and positive amplitude values
- Unipolar signal is only positive (or only negative)
- A bipolar signal can be converted into a unipolar signal by adding a constant offset

Source: Wikibooks, Sound Synthesis Theory/Modulation Synthesis
Ring Modulation (RM) I

- RM is multiplication of two bipolar signals.
- Formula for computing sample at time t.

$$\text{RingMod}_t = \text{Carrier}_t \ast \text{Modulator}_t$$

Sidebands

- RM generates frequency spectrum with 2 sidebands: sum and difference of the carrier and modulator frequencies.
- Carrier (and modulator) frequency are absent in result.
- If ratio of frequencies $\text{Carrier} / \text{Modulator}$ is integer ratio, then combination of sidebands, carrier and modulator form harmonic spectrum.
Ring Modulation (RM) II

Examples

a) 400 Hz C - M
500 M
900 C
1400 Hz C + M

b) -600 Hz C - M
400 C
1000 M
1400 Hz C + M

Source: Wikibooks, Sound Synthesis Theory/Modulation Synthesis
Ring Modulation (RM) III

Csound examples
RM-sine.csd, RM-buzz.csd
Amplitude Modulation (AM)

Differences between AM and RM

- In AM, carrier signal is unipolar instead of bipolar (as in RM)
- In AM, carrier frequency is preserved in result together with sidebands
- Loudness of sidebands is controllable by modulation index

Csound examples

AM.csd
Compositional Examples

- Wolfgang von Schweinitz (1999). *KLANG auf Schön Berg La Monte YOUNG*. (> 45 min)
Frequency Modulation (FM)

- FM modulates *frequency* of oscillator
 - RM and AM modulate amplitude of a signal
- Highly complex and dynamic timbres can be computed with very low processing cost
 - much cheaper than additive synthesis
- Amplitudes of resulting sidesbands hard to predict
 - far more complex than for AM and RM

Csound example
Demonstration of evolution of sidebands when vibrato frequency and depth is increased:
01FMSynthesisVibratoToSideBands.csd
Basic FM

Flowchart

Csound example
BasicFM.csd
C : M Ratio

- Ratio between carrier and modulator frequency
- Determines frequencies of sidebands
- If $C : M$ is simple integer ratio (e.g. $4 : 1$), then FM generates harmonic spectrum otherwise inharmonic spectrum
- Sideband frequencies are
 - $C+M$ $C+2M$ $C+3M$ $C+4M$ $C+5M$...
 - $C-M$ $C-2M$ $C-3M$ $C-4M$ $C-5M$...

![Graph showing sideband frequencies](image-url)
Modulation Index

- \textit{ModulationDepth/ModulationFrequency} (\(i_{\text{max}}\) in BasicFM flowchart above)
- Affects overall amplitude of sidebands
- Exact amplitudes of individual sidebands vary according to a highly complex function (Bessel function of first kind and nth order)

\[2\]

Source: Introduction to Computer Music, Indiana University
Emulating Acoustic Instruments with Basic FM I

Flowchart BrassFM.csd

```
lamp 1/dur

ifenv

ifq1

+

ifq2

1/dur

ifenv

ifdyn

brass settings:
N1:N2 is 1:1
imax=5
c duration ca .6sec

20_10_3

FM_Brass
```
Emulating Acoustic Instruments with Basic FM II

Flowchart BellFM.csd

Bell settings:
N1:N2 is 5:7
imax = 10
duration ca. 15 sec

20_10_1
FM_Bell
Emulating Acoustic Instruments with Basic FM III

Csound examples
BrassFM.csd, BellFM.csd

Source
Multiple-Modulator FM

Various extension of the basic FM have been developed, e.g., multiple modulators may modulate each other in a chain.

Csound example
DoubleModulatorFM.csd
Summary

- Practical exercises
- Amplitude and ring modulation
- Frequency modulation
Exercises for Next Week

Reading
- Read Csound book chapter 9: *FM Synthesis and Morphing in Csound: from Percussion to Brass*
- Optionally, also read
 - Csound book chapter 12: *FM Synthesis in Csound*

Practical exercises
- Finish exercises given at beginning of session
- Somehow change example AM.csd such that modulation index (imod) changes at control rate modulated by an envelope. Parameters of the envelope should be controllable in the score
- Execute examples of Csound book chapter 9
- Explore sound possibilities of DoubleModulatorFM.csd