MARE 502, Advanced Topics in Computer Music

Dr Torsten Anders
Prof E R Miranda
Interdisciplinary Centre for Computer Music Research (ICCMR)
University of Plymouth
http://cmr.soc.plymouth.ac.uk/

19 November 2009

Outline of this Lecture

Questions

• What is the difference between unipolar and bipolar signals?

- What is the difference between unipolar and bipolar signals?
- How does ring modulation affect incoming sinusoidal signals?

- What is the difference between unipolar and bipolar signals?
- How does ring modulation affect incoming sinusoidal signals?
- What are the differences between ring/amplitude modulation on the one hand, and frequency modulation on the other hand (technically and perceptually)?

- What is the difference between unipolar and bipolar signals?
- How does ring modulation affect incoming sinusoidal signals?
- What are the differences between ring/amplitude modulation on the one hand, and frequency modulation on the other hand (technically and perceptually)?
- What is the frequency modulation C : M ratio; what is the frequency modulation index?

- What is the difference between unipolar and bipolar signals?
- How does ring modulation affect incoming sinusoidal signals?
- What are the differences between ring/amplitude modulation on the one hand, and frequency modulation on the other hand (technically and perceptually)?
- What is the frequency modulation C: M ratio; what is the frequency modulation index?
- History: who discovered frequency modulation?

Phase Vocoder Overview

- Phase vocoder analyses and resynthesises a signal
- Analysed signal can be changed before resynthesis!
- Phase vocoder uses (inverse) Fourier transform (FFT)

^aSource: William A. Sethares (2007). Rhythm and Transforms.

Changing the Analysis I

- Read analysis at different speed (and backwards), without changing the pitch and spectrum
- Changing the pitch without changing the speed
- Changing the spectrum
- Combining the techniques above
- ...

Changing the Analysis II

Changing speed

pvoc.csd, pvoc2.csd

Changing pitch

pvoc3.csd

Changing spectrum (filtering)

pvsanal-filter.csd, pvsanal-bandpass.csd, pvsanal-arp.csd

Other

pvsanal-freeze.csd, pvsanal-blur.csd

Phase Vocoder Analysis

Principle restriction

- Either high temporal resolution
- Or high frequency resolution

Temporal Resolution

- Temporal resolution depends on window size.
- Typical window size: between 512 and 4096 samples (powers of 2 are particular efficient)

Formula

temporal resolution = window size / sampling rate

```
sampling rate = 44100 Hz
window size = 2048
-> temporal resolution = 46 msec
```

Note: in transients (e.g. note attacks) signal might change faster – smaller window size might be necessary

Frequency Resolution I

- Each analysis frame consists of set of bins: represent energy at different frequency bands
- Bins are distributed *lineary* over spectrum: resolution particularily restricted for lower frequency bands

Formula (reverse of temporal resolution)

frequency resolution of bins = sampling rate / window size

Frequency Resolution II

Example

```
sampling rate = 44100 Hz
window size = 2048
-> frequency resolution = 21.5 43.06 Hz
```

Note: low note on the piano about 80 Hz: frequency resolution of bins only 1/4 octave at low end – larger window size would be necessary

- Phase vocoder takes also phase into account: frequency of any bin can deviate up and down
- Only 1 frequency per bin: frequencies in adjacent bins (e.g., different partials) bunch together

Overlapping Windows

- Overlapping windows allow to for both higher temporal and frequency resolution
- But: signal gets "smeared" over time (sounds like some kind of reverb)

Realtime

Obvious restriction: time line of realtime input sound cannot be changed

Resynthesis by Additive Synthesis

- Resynthesis more efficient (e.g., playing only few analysis bins might be sufficient)
- Further sound processing techniques possible, e.g.,
 - Resynthesis can use other function tables besides sine waves
 - Only some subset of the FFT bins is resynthesised
 - with several resyntheses together, one can gradually fade in different parts of the resynthesis, creating various "filtering" effects

Example

pvsanal-pvsadsyn.csd

Compositional Examples

Trevor Wishart (1986) VOX 5 (part of the VOX Cycle). 6:13 min.

Hans Tutschku (1995). Sieben Stufen. 13:00 min.

http:

//www.tutschku.com/content/works-siebenstufen.en.php

Further Comments

More advanced phase vocoder software: Audiosculpt (SuperVP) from IRCAM

Linear Predictive Coding (LPC)

Linear predictive coding (LPC) analyses the spectral envelope of a signal. It is particularly useful for signals where the spectrum does indeed change considerably (e.g., speech).

Examples

lpc1.csd, lpc2.csd

Further Analysis-Resynthesis Techniques

Several refined analysis-resynthesis techniques have been developed recently that address harmonic and inharmonic components specifically. Some of these are already supported by Csound

- ATS (Analysis Transformation Synthesis)
 https://ccrma.stanford.edu/~juan/ATS.html, Csound
 supported (http://www.csounds.com/manual/html/SpectralATS.html)
- Loris http://www.cerlsoundgroup.org/Loris/, Csound supported http://www.csounds.com/manual/html/loris.html
- Spectral Modeling Synthesis (SMS) http://mtg.upf.edu/technologies/sms

Compositional Example

Application of LPC

Paul Lansky (1988). Notjustmoreidlechatter. 7:57 min. http://silvertone.princeton.edu/~paul/sounds/notjustmoreidlechatter.mp2

Summary

- Phase vocoder
- Other analysis-resynthesis techniques

Exercises

- Execute and study the provided examples, in particular the phase vocoder examples
- Play with these examples by changing various parameters in order to understand their effect
- Try out further opcodes/techniques for changing phase vocoder analyses before resynthesis. Overviews of Csound's phase vocoder opcodes is provided at the following URLS
 - http://www.csounds.com/manual/html/ SpectralRealTime.html
 - http: //www.csounds.com/manual/html/SpectralTop.html