
Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Interactive Intelligent Systems Workshop:
Music Constraint Programming (4)

Torsten Anders
Interdisciplinary Centre for Computer Music Research (ICCMR)

University of Plymouth
http://cmr.soc.plymouth.ac.uk/

28 November 2007

Torsten Anders Music Constraint Programming (4)

http://cmr.soc.plymouth.ac.uk/

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Outline

1 Motivation: Problem-Specific Search Orderings

2 The Constraint Model Based on Computational Spaces

3 Specialising the Constraint Model for Music

4 Conclusion

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Variable and Value Orderings
Different Musical CSPs Require Different Variable Orderings

Why Discussing the Search Process?

Music constraint programming greatly simplifies the
implementation of complex music theory models

User only specifies all constraints the solution should fulfil
A constraint solver finds solution(s) for a constraint
satisfaction problem (CSP) via search

However, reasonably efficient search vital to make system
useful in practice

This talk discusses how musical CSPs are solved efficiently

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Variable and Value Orderings
Different Musical CSPs Require Different Variable Orderings

Variable and Value Orderings I

Variable ordering

Order in which variables are visited during the search process

Variable ordering has great impact on efficiency (size of
resulting search tree)

Suitable variable ordering highly problem dependent

Static vs. dynamic variable ordering

Variable ordering is either fixed before the search starts (static), or
computed during the search process (dynamic)

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Variable and Value Orderings
Different Musical CSPs Require Different Variable Orderings

Variable and Value Orderings II

First-fail principle

Common principle for designing dynamic variable orderings

Essence: deal with hard cases first – if failure is inevitable,
better fail early

Typical approaches: first visit variable with smallest domain,
or variable with most constraints applied to it

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Variable and Value Orderings
Different Musical CSPs Require Different Variable Orderings

Variable and Value Orderings III

Value ordering

Order in which variable domain values are considered during
the search process (speculative computation: values may fail
and others may be tried later)

Has impact on efficiency, but also on quality of first solution

Common principle: succeed-first principle or best-first heuristic

Example for musical CSP: good heuristic is often a
randomised domain value selection (avoids uniformness)

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Variable and Value Orderings
Different Musical CSPs Require Different Variable Orderings

‘Variable orderings’ in manual composition I

In classical music education, the harmonic structure
(underlying chord progression) often written before the actual
note pitches

Some contemporary composers finish rhythmical structure and
aspects of instrumentation before writing note pitches

Melody plus accompany setting: melody is often written first,
and then the accompaniment

Homophonic music: notes of outer voices (sopran and bass)
are usually written before middle voices

Contrapuctual music: composer usually progresses with all
voices more or less in parallel

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Variable and Value Orderings
Different Musical CSPs Require Different Variable Orderings

‘Variable orderings’ in manual composition II

These observations suggest: variable orderings also play an
important role for efficiently/adequately solving musical CSPs

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Variable and Value Orderings
Different Musical CSPs Require Different Variable Orderings

Variable Orderings for Musial CSPs in Existing Systems

Existing constraint systems support a single and static variable
ordering: optimised for specific class of musical CSPs – but less
suitable for others

Many music constaint systems represent music simply as a
sequence of score objects (e.g., Situation, PWConstraints
subsystem PMC – two seminal systems)

The static variable ordering visits the variables in the order of
the sequence

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Variable and Value Orderings
Different Musical CSPs Require Different Variable Orderings

Left-to-Right Variable Ordering I

Left-to-right variable ordering

Static variable ordering of Score-PMC, a subsystem of
PWConstraints for polyphonic music [Laurson, 1996]

Visit note with smaller start time more early

If two notes share the same start time

Visit note of lower voice before note of upper voice
Visit longer note before shorter note

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Variable and Value Orderings
Different Musical CSPs Require Different Variable Orderings

Left-to-Right Variable Ordering II

Left-to-right variable ordering, demonstrated at a Bach chorale (cf.
[Laurson, 1996])

22

23

21

�

�

�

�

31

�

�

�

16

17

24

�

�

�

�

20
�

25

26

28

27 30

29

�

�

�

� �
5

�

�

�

�

7

9

8

�

�

�

�

3

2

1

4

14

13

12

�

�

�

�

18

19

6

15

�

�

�

�

10

11

�

�

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Variable and Value Orderings
Different Musical CSPs Require Different Variable Orderings

Left-to-Right Variable Ordering III

Advantages

Efficient solving of polyphonic CSP

Rhythmical structure can be arbitrarily complex

Disadvantages

Rhythmical structure must be fully determined in CSP
definition (!)

This variable ordering hard-wired in Score-PMC: less efficient
for, e.g., harmonic CSPs with complex constraints on
underlying harmonic structure (causes redundant work at note
pitches)

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Variable and Value Orderings
Different Musical CSPs Require Different Variable Orderings

Motivation

We want to solve various different musical CSPs: harmonic,
contrapuctual etc.
Therefore, we want to choose a variable ordering suitable for the
CSP at hand

The following section introduces a constraint programming model
which supports dynamic and user-definable variable and value
orderings

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Message-Passing Concurrency
Propagate-and-Search
First-Fail Distribution: a Musical Example
Distribution Strategy Definition
Other Features of the Space-Based Constraint Model
Implementations

Message-Passing Concurrency: the Underlying
Programming Model I

Partial values (logic variables): variable can be

free (nothing is known about its value)
partially determined (e.g. it is a list with undetermined
elements)
fully determined
Constraints add information about variable values (e.g.,
unification, numeric constraints)

Concurrency: computations executed in multiple threads
(created explicitly)

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Message-Passing Concurrency
Propagate-and-Search
First-Fail Distribution: a Musical Example
Distribution Strategy Definition
Other Features of the Space-Based Constraint Model
Implementations

Message-Passing Concurrency: the Underlying
Programming Model II

Synchronisation of threads on variables:

Thread blocks if logic variables used in a statement of the
thread lack required information
Another thread might provide this information – threads
communicate via (dataflow) variables

First-class procedures: procedures (abstracting computations)
are first-class values, and support lexical scope

Ports: communication channel for sending data between
concurrent threads, including many-to-one communication
(asynchronous FIFO)

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Message-Passing Concurrency
Propagate-and-Search
First-Fail Distribution: a Musical Example
Distribution Strategy Definition
Other Features of the Space-Based Constraint Model
Implementations

Message-Passing Concurrency: the Underlying
Programming Model III

Note

Message-passing concurrency is highly expressive
programming model: it greatly simplifies writing concurrent
programs with massive number of threads

Reason: stateless concurrency (no conflicts of shared
resources can occur)

Example: Erlang programming language

Model of programming language Erlang is similar to this
message-passing concurrency model. Ericsson uses Erlang
successfully in several Ericsson products for telecommunication

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Message-Passing Concurrency
Propagate-and-Search
First-Fail Distribution: a Musical Example
Distribution Strategy Definition
Other Features of the Space-Based Constraint Model
Implementations

From Message-Passing Concurrency to Constraint
Programming

No support for search in message-passing concurrent model

Adding computational spaces provides support for speculative
computations and search

In spaced-based constraint model, search is encapulated

Alternative to backtracking-based search (as in Prolog) –
backtracking not feasible with concurrency and interoperating
with external world

We only study simplified view on the constraint model based
on spaces

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Message-Passing Concurrency
Propagate-and-Search
First-Fail Distribution: a Musical Example
Distribution Strategy Definition
Other Features of the Space-Based Constraint Model
Implementations

The Computation Space

Propagate and search: a computation space encapsulates
information available on a CSP at a certain stage during the search
process

propagator propagator

constraint store

distributor

computation space

...

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Message-Passing Concurrency
Propagate-and-Search
First-Fail Distribution: a Musical Example
Distribution Strategy Definition
Other Features of the Space-Based Constraint Model
Implementations

The Constraint Store

Constraint store: stores information on variable values –
conjunction of basic constraints

Basic constraint: representation of information on partial
value of a single variable. Example for finite domain integers
(FD ints): two forms possible

X ∈ D means D (a set of natural numbers) is domain of X ,
special case X ∈ {n} means X = n (X determined to n)
X = Y means X and Y are equal (unified) – both can be
undetermined

Example constraint store

X ∈ {1, . . . , 5} ∧ Y = 7 ∧ Z = X

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Message-Passing Concurrency
Propagate-and-Search
First-Fail Distribution: a Musical Example
Distribution Strategy Definition
Other Features of the Space-Based Constraint Model
Implementations

Constraint Propagation I

Propagator

Any more complex constraint (non-basic constraint) expressed
by propagator

A propagator is a concurrent agent

Propagator aims to add information (i.e. narrows variable
domains) which is

consistent with constraint store
follows from constraint expressed by propagator

Implemented by algorithm usually highly optimised for its
specific constraint

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Message-Passing Concurrency
Propagate-and-Search
First-Fail Distribution: a Musical Example
Distribution Strategy Definition
Other Features of the Space-Based Constraint Model
Implementations

Constraint Propagation II

Example: propagator X < Y narrows domain of X and Y

Store before propagation: X ∈ {1, . . . , 5} ∧ Y ∈ {1, . . . , 5}
Store after propagation: X ∈ {1, . . . , 4} ∧ Y ∈ {2, . . . , 5}

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Message-Passing Concurrency
Propagate-and-Search
First-Fail Distribution: a Musical Example
Distribution Strategy Definition
Other Features of the Space-Based Constraint Model
Implementations

Constraint Propagation III

Note

Constraint propagation does not necessarily lead to a solution

Example: propagators X 6= Y , X 6= Z , and Y 6= Z cannot reduce
the domains further

X ∈ {1, 2} ∧ Y ∈ {1, 2} ∧ Z ∈ {1, 2}

Stable space

No further propagation is possible: hosting computation space is
stable

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Message-Passing Concurrency
Propagate-and-Search
First-Fail Distribution: a Musical Example
Distribution Strategy Definition
Other Features of the Space-Based Constraint Model
Implementations

Constraint Distribution I

Constraint distribution creates two child spaces which are the
result of two complementary decisions (expressed by the two added
constraints C and ¬C)

parent computation space

constraint store

propagator propagator[...]

distributor

child computation space

constraint store

propagator propagator[...]

distributor

child computation space

constraint store

propagator propagator[...]

distributor

constraint C constraint ¬C

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Message-Passing Concurrency
Propagate-and-Search
First-Fail Distribution: a Musical Example
Distribution Strategy Definition
Other Features of the Space-Based Constraint Model
Implementations

Constraint Distribution II

Constraint distribution (branching): proceeds to spaces easier
to solve, but with same solution set (search)

Distributor: concurrent agent

Waits until space is stable
Then creates two child spaces (copies of parent space)
Add some basic constraint C to store of one child space and
its complement ¬C to store of other child space
Important: choose such C and ¬C which trigger further
constraint propagation

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Message-Passing Concurrency
Propagate-and-Search
First-Fail Distribution: a Musical Example
Distribution Strategy Definition
Other Features of the Space-Based Constraint Model
Implementations

Constraint Distribution III

Example distribution strategy: first-fail

Select variable with smallest domain, and determine it to its
left-most domain value

Combination of constraint propagation and distribution is a
complete search method for solving CSPs

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Message-Passing Concurrency
Propagate-and-Search
First-Fail Distribution: a Musical Example
Distribution Strategy Definition
Other Features of the Space-Based Constraint Model
Implementations

First-Fail Distribution: a Musical Example I

CSP all-distance series definition (length 4)

Xs := list of 4 FD ints, each with domain {0, . . . , 3}
Dxs := list of 3 FD ints, each with domain {1, . . . , 3}

3∧
i=1

Dxs i = |Xs i − Xs i+1|

∧ distinct(Xs)

∧ distinct(Dxs)

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Message-Passing Concurrency
Propagate-and-Search
First-Fail Distribution: a Musical Example
Distribution Strategy Definition
Other Features of the Space-Based Constraint Model
Implementations

First-Fail Distribution: a Musical Example II

All-distance series: search tree for all solutions of length 4

5 6

4

2 3

1
dxs =11

2dxs =2

xs =11 xs =11

dxs =11

Space Domains of elements in Xs Domains of elements in Dxs

1 [{0, . . . , 3}, . . . , {0, . . . , 3}] [{1, . . . , 3}, {1, . . . , 3}, {1, . . . , 3}]
2 [{0, . . . , 3}, . . . , {0, . . . , 3}] [1, {2, 3}, {2, 3}]
3 [{0, . . . , 3}, . . . , {0, . . . , 3}] [{2, 3}, {1, 2, 3}, {1, 2, 3}]
4 [{1, 2}, {1, 2}, {0, 3}, {0, 3}] [1, 2, 3]
5 [1, 2, 0, 3] [1, 2, 3]
6 [2, 1, 3, 0] [1, 2, 3]

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Message-Passing Concurrency
Propagate-and-Search
First-Fail Distribution: a Musical Example
Distribution Strategy Definition
Other Features of the Space-Based Constraint Model
Implementations

Distribution Strategy Definition I

Distribution strategy can be defined ‘from scratch’ (cf.
[Schulte, 2002])

More convenient: definition with a higher-level interface

Simple interface example expects two first-class functions as
arguments (see next slide)

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Message-Passing Concurrency
Propagate-and-Search
First-Fail Distribution: a Musical Example
Distribution Strategy Definition
Other Features of the Space-Based Constraint Model
Implementations

Distribution Strategy Definition II

Order: which variable is distributed (variable ordering)

Boolean function expecting two variables. Returns true if first
variable should be visited before the second

Value: how does distribution strategy effect domain of selected
variable (value ordering)

Function expecting a variable, and returning a reduced domain
specification for this variable (usually a single domain value)

Example: first-fail distribution strategy definition

Order: myOrder(X , Y) := getDomSize(X) ≤ getDomSize(Y)
Value: myValue(X) := getMinDomValue(X)

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Message-Passing Concurrency
Propagate-and-Search
First-Fail Distribution: a Musical Example
Distribution Strategy Definition
Other Features of the Space-Based Constraint Model
Implementations

Variable and Value Orderings

User can freely define distribution strategies

Defining a distribution strategy means defining shape of
search tree: i.e., a variable and value ordering

Next distribution step is always decided only when it is
required: dynamic ordering

Distribution strategies can be changed independently of
problem definition

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Message-Passing Concurrency
Propagate-and-Search
First-Fail Distribution: a Musical Example
Distribution Strategy Definition
Other Features of the Space-Based Constraint Model
Implementations

Principles for Efficient Distribution Design

An efficient distribution strategy results in a relatively small
search tree (little amount of failure)

Constraint propagation never causes a fail (no redundant
work)

An efficient distribution strategy keeps distribution steps at
minimum, i.e. helps constraint propagation to do most of the
work

Common example: first-fail principle (see above)

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Message-Passing Concurrency
Propagate-and-Search
First-Fail Distribution: a Musical Example
Distribution Strategy Definition
Other Features of the Space-Based Constraint Model
Implementations

Resolve-Inaccessible-Context Principle I

Inaccessible score context

Set of score object which can not be accessed because of
undetermined information
Example: if the rhythmical structure is undetermined, then the
contexts of simultaneous notes are inaccessible

Note

If inaccessible contexts are constrained, then constraints
applied to inaccessible contexts can not propagate

This occurs frequently in musical CSPs

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Message-Passing Concurrency
Propagate-and-Search
First-Fail Distribution: a Musical Example
Distribution Strategy Definition
Other Features of the Space-Based Constraint Model
Implementations

Resolve-Inaccessible-Context Principle II

Resolve-inaccessible-context principle

Resolve constrained inaccessible score contexts early in the
search process

A rule of thumb for designing score variable orderings, like
first-fail principle

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Message-Passing Concurrency
Propagate-and-Search
First-Fail Distribution: a Musical Example
Distribution Strategy Definition
Other Features of the Space-Based Constraint Model
Implementations

Other Features of the Space-Based Constraint Model

Besides propagation and distribution, the constraint model has
more features – at least mentioned here

Constraint propagation between variables with specific
domains

User-definable distribution strategy (branching strategies):
specifies search tree

User-definable exploration strategy: exploration of search tree

Reified constraints: constraining the truth value of other
constraints (e.g., with logical connnectives)

Recomputation: trades memory for run time

Parallel search: distribute workload of solver on multiple
computers

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Message-Passing Concurrency
Propagate-and-Search
First-Fail Distribution: a Musical Example
Distribution Strategy Definition
Other Features of the Space-Based Constraint Model
Implementations

Implementations of the Space-Based Constraint Model

Mozart: implementation of the multi-paradigm programming
language Oz, http://www.mozart-oz.org/

Gecode: C++ library, http://www.gecode.org/

Torsten Anders Music Constraint Programming (4)

http://www.mozart-oz.org/
http://www.gecode.org/

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Score Distribution Strategies
First-Fail Score Distribution Strategy
Resolving Inaccessible Score Contexts
Left-to-Right Variable Ordering

Score Distribution Strategies

Distribution strategies usually distribute plain variables

Instead, score distribution strategies distribute parameter
objects of music representation

Advantage:

Parameter objects provide access to the score object they
belong to, and that way to all information in score (via
bidirectional links between score objects)
So, a score distribution can make an informed decision

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Score Distribution Strategies
First-Fail Score Distribution Strategy
Resolving Inaccessible Score Contexts
Left-to-Right Variable Ordering

Recap: Bidirectional Links Between Score Objects I

The hierarchic structure of a single note and its contained
parameters (UML)

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Score Distribution Strategies
First-Fail Score Distribution Strategy
Resolving Inaccessible Score Contexts
Left-to-Right Variable Ordering

Recap: Bidirectional Links Between Score Objects II

The hierarchic structure of a container with several contained notes

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Score Distribution Strategies
First-Fail Score Distribution Strategy
Resolving Inaccessible Score Contexts
Left-to-Right Variable Ordering

Definition: First-Fail Score Distribution Strategy

Recap: idea of first-fail distribution

Select parameter which stores the variable with smallest domain,
and determine the variable to its left-most domain value

First-fail distribution strategy distributing parameters

Order:
myOrder(par1, par2) :=

getDomSize(getValue(par1)) ≤ getDomSize(getValue(par2))

Value: myValue(X) := getMinDomValue(X)

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Score Distribution Strategies
First-Fail Score Distribution Strategy
Resolving Inaccessible Score Contexts
Left-to-Right Variable Ordering

Application: First-Fail Distribution Strategy I

Musical example: Fuxian first-species counterpoint

http://strasheela.sourceforge.net/strasheela/doc/
Example-FuxianFirstSpeciesCounterpoint.html

All constraints can be applied directly (i.e. no inaccessible
contexts in CSP definition)

This makes it possible to apply an established general
distribution strategy: first-fail

Torsten Anders Music Constraint Programming (4)

http://strasheela.sourceforge.net/strasheela/doc/Example-FuxianFirstSpeciesCounterpoint.html
http://strasheela.sourceforge.net/strasheela/doc/Example-FuxianFirstSpeciesCounterpoint.html

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Score Distribution Strategies
First-Fail Score Distribution Strategy
Resolving Inaccessible Score Contexts
Left-to-Right Variable Ordering

Application: First-Fail Distribution Strategy II

Search tree of Fuxian first-species
counterpoint example

Small search tree with only
few failed notes (squares)
until first solution is found
(diamond) – i.e. constraint
propagation does most of the
work

Runtime: ca. 50 msecsa

aPentium 4, 3.2 GHz, 512 MB RAM,
Linux Fedora Core 3

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Score Distribution Strategies
First-Fail Score Distribution Strategy
Resolving Inaccessible Score Contexts
Left-to-Right Variable Ordering

Resolving a Single Contexts I

Typical example of inaccessible score context: if rhythmical
structure is undetermined, then simultaneous notes are
inaccessible

One solution: determine all temporal parameters, before other
parameters

Variable ordering which determines all temporal parameters first

Order: myOrder(par1, par2) := isTemporalParameter(par1)

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Score Distribution Strategies
First-Fail Score Distribution Strategy
Resolving Inaccessible Score Contexts
Left-to-Right Variable Ordering

Resolving a Single Contexts II

Variable ordering which first determines temporal parameters
is only example

Other example is harmonic CSP: explicitly represented
analytical harmonic information should be determined before
actual note pitches

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Score Distribution Strategies
First-Fail Score Distribution Strategy
Resolving Inaccessible Score Contexts
Left-to-Right Variable Ordering

Resolving Multiple Contexts in Order I

A variable ordering for harmonic CSPs

First determine the temporal structure, then the harmonic
structure, and finally the actual note parameters in the order pitch
class, octave, pitch
Order: determineInOrder([isTemporalParameter ,

isChordParameter ,

isPitchClass]),

isPitchOctave]),

isPitch])

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Score Distribution Strategies
First-Fail Score Distribution Strategy
Resolving Inaccessible Score Contexts
Left-to-Right Variable Ordering

Resolving Multiple Contexts in Order II

Function determineInOrder returns ordering function g

determineInOrder(tests) :=

let /* Append a default test function which always returns true. */

allTests := append(tests, [f : f (x) := true])
in g : g(p1, p2) :=

getTestIndex(p1, allTests) ≤ getTestIndex(p2, allTests)

Function determineInOrder expects list of boolean functions;
returns variable ordering function which determines parameters
in the order specified by the list of boolean functions

Function getTestIndex expects object and list of boolean
functions; returns index of first function returning true for
given object

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Score Distribution Strategies
First-Fail Score Distribution Strategy
Resolving Inaccessible Score Contexts
Left-to-Right Variable Ordering

Application: Resolving Inaccessible Score Context I

Musical example: chord progression

http://strasheela.sourceforge.net/strasheela/doc/
Example-MicrotonalChordProgression.html
http://strasheela.sourceforge.net/strasheela/doc/
Example-HarmonisedLindenmayerSystem.html

Distribution strategy for CSP actually combines resolving of
multiple score contexts with first-fail principle

Example: in case of multiple chord parameters, the parameter
with smallest domain is determined first

Torsten Anders Music Constraint Programming (4)

http://strasheela.sourceforge.net/strasheela/doc/Example-MicrotonalChordProgression.html
http://strasheela.sourceforge.net/strasheela/doc/Example-MicrotonalChordProgression.html
http://strasheela.sourceforge.net/strasheela/doc/Example-HarmonisedLindenmayerSystem.html
http://strasheela.sourceforge.net/strasheela/doc/Example-HarmonisedLindenmayerSystem.html

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Score Distribution Strategies
First-Fail Score Distribution Strategy
Resolving Inaccessible Score Contexts
Left-to-Right Variable Ordering

Left-to-Right Variable Ordering I

Dynamic ordering version of variable ordering of Score-PMC
(see above)

Resolves inaccessible score context of simultaneous score
objects dynamically

Therefore, applicable for polyphonic CSP even when the
rhythmical structure is undetermined in CSP definition

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Score Distribution Strategies
First-Fail Score Distribution Strategy
Resolving Inaccessible Score Contexts
Left-to-Right Variable Ordering

Left-to-Right Variable Ordering II

Recap: left-to-right variable ordering of Score-PMC

22

23

21

�

�

�

�

31

�

�

�

16

17

24

�

�

�

�

20
�

25

26

28

27 30

29

�

�

�

� �
5

�

�

�

�

7

9

8

�

�

�

�

3

2

1

4

14

13

12

�

�

�

�

18

19

6

15

�

�

�

�

10

11

�

�

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Score Distribution Strategies
First-Fail Score Distribution Strategy
Resolving Inaccessible Score Contexts
Left-to-Right Variable Ordering

Definition: Left-to-Right Variable Ordering

A left-to-right dynamic variable ordering

Order: myOrder(p1, p2) :=

let start1 := getStartTime(getItem(p1))
start2 := getStartTime(getItem(p2))
isStart1Bound := (getDomSize(start1) = 1)

in if isStart1Bound ∧ (getDomSize(start2) = 1)
then if start1 = start2

then isTemporalParameter(p1)
else start1 ≤ start2

else isStart1Bound

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Score Distribution Strategies
First-Fail Score Distribution Strategy
Resolving Inaccessible Score Contexts
Left-to-Right Variable Ordering

Application: Left-to-Right Variable Ordering I

Musical example: florid counterpoint

http://strasheela.sourceforge.net/strasheela/doc/
Example-FloridCounterpoint.html

Context of simultaneous notes constrained, but inaccessible in
CSP definition

CSP defines relatively complex combinatorial problem. Rules
which cause particular complexity (together with standard
rhythmic, harmonic, and melodic counterpoint rules):

Canon
Pitch maxima and minima of phrases must differ

Torsten Anders Music Constraint Programming (4)

http://strasheela.sourceforge.net/strasheela/doc/Example-FloridCounterpoint.html
http://strasheela.sourceforge.net/strasheela/doc/Example-FloridCounterpoint.html

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Score Distribution Strategies
First-Fail Score Distribution Strategy
Resolving Inaccessible Score Contexts
Left-to-Right Variable Ordering

Application: Left-to-Right Variable Ordering II

Runtime measurements (full CSP)

Left-to-right variable ordering: ca. 4 secs (189 distributable
spaces, 175 failed spaces, search tree depth 47)

Distribution which first determines rhythmic structure: no
solution after 1 hour!

Left-to-right variable ordering at least 900 times faster

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Score Distribution Strategies
First-Fail Score Distribution Strategy
Resolving Inaccessible Score Contexts
Left-to-Right Variable Ordering

Application: Left-to-Right Variable Ordering III

Runtime measurements (simplified CSP: no unique maxima and
minima pitches required)

Left-to-right variable ordering: 1.7 secs (92 distributable
spaces, 70 failed spaces, search tree depth 53)

Distribution which first determines rhythmic structure: 14 secs
(630 distributable spaces, 601 failed spaces, search tree depth
62)

Left-to-right variable ordering almost 10 times faster

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Score Distribution Strategies
First-Fail Score Distribution Strategy
Resolving Inaccessible Score Contexts
Left-to-Right Variable Ordering

Application: Left-to-Right Variable Ordering IV

Result

Choice of suitable variable ordering has great influence on
efficiency – also in music domain

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Recommended Reading
Master Thesis Project Proposals
Summary

Recommended Reading I

Computer-aided composition (CAC) in general

Miranda, E. R (2001). Composing Music with Computers.
Focal Press. – introduction to CAC in general

Roads, C. (1996). The Computer Music Tutorial. MIT press.
– very good survey of whole computer music field, CAC
discussed in Chap. 18 “Algorithmic Composition Systems” and
19 “Representation and Strategies for Algorithmic
Composition”

Dodge, C. and Jerse, T. A. (1997). Computer Music:
Synthesis, Composition, and Performance. Schirmer Books. –
sound synthesis textbook with several CAC examples

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Recommended Reading
Master Thesis Project Proposals
Summary

Recommended Reading II

Music constraint programming

Pachet, F. and P. Roy (2001). Musical Harmonization with
Constraints: A Survey. Constraints Journal 6(1).
http://www.csl.sony.fr/downloads/papers/2000/
pachet-constraints2000.pdf – survey of music constraint
programming subfield: harmonisation

Torsten Anders (2007). Composing Music by Composing Rules:
Design and Usage of a Generic Music Constraint System. PhD.
thesis, Queen’s University Belfast. http://strasheela.
sourceforge.net/documents/TorstenAnders-PhDThesis.pdf
– explains Strasheela in detail, Chap. 3 extensively surveys field
music constraint programming

Torsten Anders Music Constraint Programming (4)

http://www.csl.sony.fr/downloads/papers/2000/pachet-constraints2000.pdf
http://www.csl.sony.fr/downloads/papers/2000/pachet-constraints2000.pdf
http://strasheela.sourceforge.net/documents/TorstenAnders-PhDThesis.pdf
http://strasheela.sourceforge.net/documents/TorstenAnders-PhDThesis.pdf

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Recommended Reading
Master Thesis Project Proposals
Summary

Recommended Reading III

Constraint programming (CP) in general

Roman Barták (1998). On-Line Guide to Constraint
Programming. http://kti.ms.mff.cuni.cz/~bartak/
constraints/index.html – gentle introduction to CP

Apt, K. R. (2003). Principles of Constraint Programming.
Cambridge University Press. – general overview of the field
with many CSP examples

Dechter, R. (2003). Constraint Processing. Morgan
Kaufmann. – explains various constraint solving algorithms

Torsten Anders Music Constraint Programming (4)

http://kti.ms.mff.cuni.cz/~bartak/constraints/index.html
http://kti.ms.mff.cuni.cz/~bartak/constraints/index.html

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Recommended Reading
Master Thesis Project Proposals
Summary

Recommended Reading IV

Constraint programming model used by Strasheela

van Roy, P. and S. Haridi (2004). Concepts, Techniques, and
Models of Computer Programming. MIT Press. – highly
recommended programming textbook in general (google for
computer music textbook), Chap. 12 explains space-based
constraint model

Schulte, C. (2002). Programming Constraint Services.
Springer-Verlag. – most detailed explanation of the
space-based constraint model, advanced text

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Recommended Reading
Master Thesis Project Proposals
Summary

OpenSound Control Interface for Oz (MSc project) I

Strasheela results can be exported in various formats for music
notation and sound synthesis

This project will add OpenSound Control output to Strasheela

OpenSound Control (OSC) is communication protocol used by
many music applications

OSC exceeds the widespread MIDI standard (e.g., more
flexibility what data is send, operates at broadband network
speeds)

Project will create an Oz interface for an existing
cross-platform OSC library (C or C++ library, e.g., liblo)

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Recommended Reading
Master Thesis Project Proposals
Summary

OpenSound Control Interface for Oz (MSc project) II

URLS

Strasheela: http://strasheela.sourceforge.net

OSC:
http://www.cnmat.berkeley.edu/OpenSoundControl/

liblo: http://liblo.sourceforge.net

Oz: http://www.mozart-oz.org

Torsten Anders Music Constraint Programming (4)

http://strasheela.sourceforge.net
http://www.cnmat.berkeley.edu/OpenSoundControl/
http://liblo.sourceforge.net
http://www.mozart-oz.org

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Recommended Reading
Master Thesis Project Proposals
Summary

A Graphical User Interface for Strasheela (MRes project) I

Strasheela highly expressive composition system

Its user interface is the programming language Oz: suitable for
expert users, but makes learning Strasheela hard for new users

This project will design and implement a graphical user
interface for important Strasheela functionality

Strasheela is programming system: its interface must allow
high degree of flexibility

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Recommended Reading
Master Thesis Project Proposals
Summary

A Graphical User Interface for Strasheela (MRes project) II

Possible solution: visual programming language (VPL) – many
successful music programming systems with VPL exist

Possible approaches

VPL based on existing VPL system for music (e.g. PWGL or
OpenMusic) – generates Strasheela code, communication via
socket
Design of new VPL, e.g., implemented with QTk, a high-level
Tk interface provided by Oz

Torsten Anders Music Constraint Programming (4)

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Recommended Reading
Master Thesis Project Proposals
Summary

A Graphical User Interface for Strasheela (MRes project) III

URLS

Strasheela: http://strasheela.sourceforge.net

PWGL: http://www2.siba.fi/PWGL/

OpenMusic: http:
//recherche.ircam.fr/equipes/repmus/OpenMusic/

Oz: http://www.mozart-oz.org

Torsten Anders Music Constraint Programming (4)

http://strasheela.sourceforge.net
http://www2.siba.fi/PWGL/
http://recherche.ircam.fr/equipes/repmus/OpenMusic/
http://recherche.ircam.fr/equipes/repmus/OpenMusic/
http://www.mozart-oz.org

Motivation: Problem-Specific Search Orderings
The Constraint Model Based on Computational Spaces

Specialising the Constraint Model for Music
Conclusion

Recommended Reading
Master Thesis Project Proposals
Summary

Summmary

Motivation of problem-specific variable and value orderings

Constraint model based on computational spaces allows for
user-defined and dynamic variable and value orderings

Score distribution strategies implement problem-specific
variable/value orderings for musical CSPs. Examples

Common technique in general: first-fail
Distribution strategies for resolving inaccessible score contexts
Left-to-right variable ordering

Torsten Anders Music Constraint Programming (4)

